Skip to main content
Log in

Experimental Study of a Nanoparticle Virtual Impactor

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A nanoparticle virtual impactor was constructed and its performance under different operating conditions was investigated. Experimental evaluations showed that the nanoparticle virtual impactor has a 50% cutoff size ranging from 15 to 60nm. Further, the cutoff size of 60nm can be achieved at an impactor chamber pressure of 220torr when the nozzle upstream pressure is 760torr. This pressure level is much higher than that of thin-plate orifice nozzle impactors, which require 12torr to achieve the cutoff size of 66nm. Thus, the proposed virtual impactor can be operated with a small vacuum pump, which is more preferable for practical applications.

In this study, the effects of design parameters on the impactor performance have also been experimentally investigated. The parameters include the separation distance between the collection probe and the acceleration nozzle, the pressure ratio of the upstream and downstream chambers, the diameter ratio of the collection probe and the nozzle, the flow ratio of the minor and total flows, total mass flow rates and the upstream pressure. The experimental data obtained were then scaled with the Stokes number defined by previous researchers. The performance of the proposed nanoparticle virtual impactors can therefore be estimated when the operating variables are given or measured. An important finding in this parametric study is that the optimal diameter ratio of collection probe to nozzle is around 1.8. It is different from the value of 1.4 recommended in previous studies with virtual impactors for submicron particle applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson J.D.J., 1990. Modern Compressible Flow with Historical Perspective, McGraw Hill.

  • Biswas P. & R.C. Flagan, 1984. High-velocity inertial impactors. Environ. Sci. Technol. 18, 611–616.

    Google Scholar 

  • Biswas P. & R.C. Flagan, 1988. The Particle Trap Impactor. J. Aerosol. Sci. 19, 113–121.

    Google Scholar 

  • Chen Da-Ren & D.Y.H. Pui, 1997. Numerical modeling of the performance of differential mobility analyzers for nanometer aerosol measurements. J. Aerosol Sci. 28(4), 985–1004.

    Google Scholar 

  • Chen Da-Ren, D.Y.H. Pui, D. Hummes, H. Fissan, F.R. Quant, et al., 1998. Design and evaluation of a nanometer aerosol differential mobility analyzer (Nano-DMA). J. Aesosol Sci. 29(5/6), 497–509.

    Google Scholar 

  • Chutmanop J., N. Uji, M. Furuuchi & C. Kanaoka, 2000. Inertial Classification of Ultra Fine Particle by a Supersonic Virutal Impactor. The 17th Symposium on Aerosol Science & Technology, Higashi-Hiroshima, Japan, Japan Association of Aerosol Science and Technology.

    Google Scholar 

  • Ding Y. & P. Koutrakis, 2000. Development of a dichotomous slit nozzle virtual impactor. J. Aerosol Sci. 31(12), 1421–1431.

    Google Scholar 

  • Fernández de la Mora J., S.V. Hering, N. Rao & P.H. McMurry, 1990a. Hypersonic impaction on ultrafine particle. J. Aerosol Sci. 21(2), 169–187.

    Google Scholar 

  • Fernández de la Mora J., N. Rao & P.H. McMurry, 1990b. Inertial impaction of fine particles at moderate Reynolds numbers and in the transonic regime with a thin-plate orifice nozzle. J. Aerosol Sci. 21(5), 889–909.

    Google Scholar 

  • Flagan R.C., 1982. Compressible flowinertial impactor. J. Colloid Interface Sci. 87(1), 291–297.

    Google Scholar 

  • Foelsch K., 1949. The analytical design of an axially symmetric Laval nozzle for a parallel and uniform jet. J. Aeronautical Sci. 16(3): 161–167.

    Google Scholar 

  • Forney L.J., D.G. Ravenhall & S.S. Lee, 1982. Experimental and theoretical study of a two-dimensional virtual impactor. Environ. Sci. Technol. 16, 492–497.

    Google Scholar 

  • Furuuchi, 2001. Numerical Simulation of Flow and Particle Motion Inside a Supersoic Virtual Impactor, NSF-ESF International Symposium on Nanoparticle: Aerosols and Materials, 98-101, Pusan, Korea, July 5-6, 2001.

  • Gomez-Moreno F.J., J. Rosell-Llompart & J. Fernandez de la Mora, 2002. Turbulent transition in impactor jets and its effects on impactor resolution. J. Aerosol Sci. 33, 459–476.

    Google Scholar 

  • Hering S.W., 1987. Calibration of the QCM impactor for stratospheric Sampling. Aerosol Sci. Technol. 7, 257–274.

    Google Scholar 

  • Hering S.V. & S.K. Friedlander, 1979. Design and evaluation of a new low-pressure impactor. 2. Environ. Sci. Technol. 13(2), 184–188.

    Google Scholar 

  • Hillamo R.E. & E.I. Kauppinen, 1991. On the performance of the Berner lowpressure impactor. Aerosol Sci. Technol. 14, 33–47.

    Google Scholar 

  • Kanaoka C. & M. Furuuchi, 1996. Inertial separation of nanosize particles from supersonic flow field. J. Aerosol Sci. 27, S.5623–S.5624.

    Google Scholar 

  • Kauppinen E.I. & R.E. Hillamo, 1989. Modification of the University ofWashington Mark 5 in-stack impactor. J. Aerosol Sci. 20(5), 813–827.

    Google Scholar 

  • Liu B.Y.H. & D.Y.H. Pui, 1974. A submicron aerosol standard and the primary, absolute calibration of the condensation nuclei counter. J. Colloid Interface Sci. 47(1), 155–171.

    Google Scholar 

  • Loo B.W. & C.P. Cork, 1988. Development of high efficiency virtual impactor. Aerosol Sci. Technol. 9, 167–176.

    Google Scholar 

  • Mader B.T., R.C. Flagan & J.H. Seinfeld, 2001. Sampling atmospheric carbonaceous aerosols using a particle trap impactor/denuder sampler. Evniron. Sci. Technol. 35, 4857–4867.

    Google Scholar 

  • Maple V.A. & C.M. Chien, 1980. Virtual impactors: A theoretical study. Environ. Sci. Technol. 14, 976–985.

    Google Scholar 

  • Marple V.A., K.L. Rubow & S.M. Behm, 1991. A micro-orifice uniform deposit impactor (MOUDI): Description, calibration, and use. Aerosol Sci. Technol. 14, 434–446.

    Google Scholar 

  • Rader & V.A. Marple, 1985. Effect of ultra-Stokesian drag and particle interception on impaction characteristics. Aerosol. Sci. Technol. 4, 141–156.

    Google Scholar 

  • Tsai C.-J. & T.-Y. Lin, 2000. Particle collection efficiency of different impactor designs. Separation Sci. Technol. 35(16), 2639–2650.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, P., Chen, DR. & Pui, D.Y. Experimental Study of a Nanoparticle Virtual Impactor. Journal of Nanoparticle Research 5, 269–280 (2003). https://doi.org/10.1023/A:1025538930994

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025538930994

Navigation