Skip to main content
Log in

Effects of Temperature, pH, and Organic Phosphates on Fish Hemoglobins

  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

This review presents data on effects of temperature, pH, and organic phosphates on structural-functional characteristics of fish hemoglobins. Special attention is paid to the structure of pigments insensitive to pH as well as those that have the reverse Bohr effect in alkaline range of pH. The role of surface β-adrenoreceptors and activity of Na+/H+ exchanger in regulation of the acid-base equilibrium of intraerythrocyte medium are considered. There are compared characteristics of participation of nucleotide triphosphates, 2,3-DPG, and other organic phosphates in correction of fish hemoglobin affinity to oxygen. The values of ΔH for fish respiratory pigments are presented, and their dependence on conditions of erythrocyte microsurrounding is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Di Prisco, G., D'Avino, R., Camardella, L., Caruso, C., Romano, M., and Rutigliano, B., Structure and Function of Hemoglobin in Antarctic Fishes and Evolutionary Implications, Polar. Biol., 1990, vol. 10, pp. 269–274.

    Google Scholar 

  2. Fago, A., Carratore, V., Di Prisco, G., Feuerlein, R.J., Sottrup-Jensen, L., and Weber, R.E., The Cathodic Hemoglobin of Anguilla anguilla. Amino Acid Sequence and Oxygen Equilibria of a Reverse Bohr Effect Hemoglobin with High Oxygen Affinity and Phosphate Sensitivity, J. Biol. Chem., 1995, vol. 270, pp. 18 897–18 902.

    Google Scholar 

  3. Feuerlein, R.L. and Weber, R.E., Oxygen Equilibria of Cathodic Eel Hemoglobin Analysed in Terms of the NWC Model and Adiar's Successive Oxygenation Theory, J. Comp. Physiol., 1996, vol.165B, pp. 597–606.

    Google Scholar 

  4. Huber, F. and Braunitzer, G., The Primary Structure of Electric Ray Hemoglobin: Bohr Effect and Phosphate Interaction, Biol. Chem. Hoppe Seyler, 1989, vol. 370, pp. 831–838.

    Google Scholar 

  5. Schweitzer-Stenner, R., Bosenbeck, M., and Dreybrodt, W., Raman Dispersion Spectroscopy Probes Heme Distortions in DeoxyHb-Trout IV Involved in its T-State Bohr Effect, Biophys. J., 1993, vol. 64, pp. 1194–1209.

    Google Scholar 

  6. Liao, C.F., Chang, C.U., and Wu, J.L., Characterization of β-Adrenoreceptors in Tilapia Erythrocytes, Int. Adv. Com. Int. Mar. Biotech. Conf., Tromsoe, Norway, 1994, p. 111.

  7. Jahns, R., Borgese, F., Lindenthal, S., Straub, A., Matais, R., and Fievet, B., Trout Red Blood Cell Arrestin (TRCarr), a Novel Member of the Arrestin Family: Cloning, Immunoprecepitation and Expression of Recombinant TRCarr, Biochem. J., 1966, vol. 316, pp. 497–506.

    Google Scholar 

  8. Fievet, B., Guizouarn, H., Pellissier, B., Garsia Romeu, F., and Motais, R., Evidence for a K+/H+ Exchange in Trout Red Blood Cells, J. Physiol. (London), 1993, vol. 46, pp. 597–607.

    Google Scholar 

  9. Kwiatkowski, L.D. and Noble, R.W., The Effect of 75% Glycerol on the Oxygen Binding Properties of Carp Hemoglobin, Biochem. Biophys. Res. Commun., 1993, vol. 95, pp. 1218–1223.

    Google Scholar 

  10. Beitinger, T.L., Pettit, M.J., and Hutchison, V.H., Oxygen Transfer Characteristics of the Blood of Reedfish, Erpetoichthys calabaricus, Comp. Biochem. Physiol., 1985, vol. 82A, pp. 553–558.

    Google Scholar 

  11. Verheyen, E., Blust, R., and Decleir, W., Hemoglobin Heterogenity and the Oxygen Affinity of the Hemolysate of Some Victoria Cichlids, Comp. Biochem. Physiol., 1986, vol. 84A, pp. 315–318.

    Google Scholar 

  12. Giles, M.A. and Randall, D.J., Oxygenation Characteristics of the Polymorphic Hemoglobins of Coho Salmon at Different Developmental Stages, Comp. Biochem. Physiol., 1980, vol. 65A, pp. 265–271.

    Google Scholar 

  13. Tamburrini, M., Brancaccio, A., Ippoliti, R., and Di Prisco, G., The Amino Acid Sequence and Oxygen-Binding Properties of the Single Hemoglobin of the Cold-Adapted Antarctic Teleost Gymnodraco-Acuticeps, Arch. Biochem. Biophys., 1992, vol. 292, pp. 295–302.

    Google Scholar 

  14. Hayden, J.B., Cech, J.J., and Bridges, D.W., Blood Oxygen Dissociation Characteristics of the Winter Flonder, J. Fish. Res. Board Can., 1975, vol. 32, pp. 1539–1544.

    Google Scholar 

  15. Borisyuk, M.V., Systemic Analysis of the Mechanisms of Regulation of Blood Affinity to Oxygen. I. Intraerythrocyte Regulation of Hemoglobin Affinity to Oxygen, Usp. Fiziol. Nauk, 1983, vol. 14, pp. 85–101.

    Google Scholar 

  16. Takeda, T., Regulation of Blood Oxygenation during Short-Term Hypercapnia in the Carp, Cyprinus carpio, Comp. Biochem. Physiol., 1991, vol. 98A, pp. 517–521.

    Google Scholar 

  17. Kunzmann, A., Caruso, C., and Di Prisco, G., Haematological Studies on a High-Antarctic Fish: Bathydraco marri Norman, J. Exp. Mar. Biol. Ecol., 1991, vol. 153, pp. 243–255.

    Google Scholar 

  18. D'Avino, R., Caruso, C., Tamburrini, M., Romano, M., De-Laureto, P.P., Camardella, L., Carratore, V., and Di Prisco, G., Molecular Characterization of the Functionally Distinct Hemoglobins of the Antarctic Fish Trematomus newnesi, J. Biol. Chem., 1994, vol. 269, pp. 9675–9681.

  19. Pellegrini, M., Giardina, B., Olianas, A., Sanna, M.T., Deiana, A.M., Salvadori, S., Di Prisco, G., Tamburrini, M., and Corda, M., Structure/Function Relationship in the Hemoglobin Components from Moray (Muraena Helena), Eur. J. Biochem., 1995, vol. 234, pp. 431–436.

    Google Scholar 

  20. Taiwo, F.A., Hemoglobin of the Lungfish Clarias lazera: Isolation and Oxygen Equilibrium Studies, Comp. Biochem. Physiol., 1995, vol. 110A, pp. 147–150.

    Google Scholar 

  21. Barra, D., Bossa, F., and Brunori, M., Structute and Binding Sites for Heterotropic Effectors in Fish Haemoglobins, Nature, 1981, vol. 293, pp. 587–588.

    Google Scholar 

  22. Soldatov, A.A., The Hemoglobin System of Knout Goby at Adaptation to Environmental Temperature, Zh. Evol. Biokhim. Fiziol., 1988, vol. 24, pp. 271–274.

    Google Scholar 

  23. Petersen, C.G., Schwantes, A.R., De Luca, P.H., and Schwantes, M.L.B., Functional Properties of the Two Major Hemoglobin Components from Leporinus friderci, Comp. Biochem. Physiol., 1989, vol. 94B, pp. 823–827.

    Google Scholar 

  24. Jensen, F.B., Hydrogen Ion Equilibria in Fish Haemoglobins, J. Exp. Biol., 1989, vol. 143, pp. 225–234.

    Google Scholar 

  25. Huber, F. and Braunitzer, G., The Primary Structure of the Hemoglobin of the Electric Eel (Electrophorus electricus), Biol. Chem. Hoppe Seyler, 1989, vol. 370, pp. 245–250.

    Google Scholar 

  26. Schwantes, A.R., Bartlett, G.R., and Schwantes, M.L.B., The Hemoglobin of Geophagus brasiliensis, Comp. Biochem. Physiol., 1991, vol. 99B, pp. 157–160.

    Google Scholar 

  27. De Young, A., Kwiatkowski, L.D., and Noble, R.W., Fish Hemoglobins, Methods Enzymol., 1994, vol. 231, pp. 124–150.

    Google Scholar 

  28. Pelster, B. and Scheild, P., Countercurrent Concentration and Gas Secretion in the Fish Swim Bladder, Physiol. Zool., 1992, vol. 65, pp. 11–16.

    Google Scholar 

  29. Ingermann, R.L. and Terwilliger, R.C., Presence and Possible Function of Root Effect Hemoglobins in Fishes Lacking Functional Swim Bladders, J. Exp. Zool., 1982, vol. 220, pp. 171–177.

    Google Scholar 

  30. Di Prisco, G., Giarddina, B., D'Avino, R., Condo, S.G., Bellelli, A., and Brunori, M., Antarctic Fish Hemoglobin: an Outline of the Molecular Structure and Oxygen Binding Proteins. 2. Oxygen Binding Properties, Comp. Biochem. Physiol., 1988, vol. 90B, pp. 585–591.

    Google Scholar 

  31. Pelster, B. and Weber, R.E., Influence of Organic Phosphates on the Root Effect of Multiple Fish Haemoglobins, J. Exp. Biol., 1990, vol. 147, pp. 425–437.

    Google Scholar 

  32. Vaccaro, T.A.M., Raschetti, R., Morpurgo, G., and Riccardi, G., Adaptation of Hemoglobin in the Goldfish. Temperature and Organic Phosphate Dependence of the Root Effect, Isr. J. Med. Sci., 1976, vol. 12, pp. 874–877.

    Google Scholar 

  33. Petruzzelli, R., Barra, D., Sensi, L., Bossa, F., and Brunori, M., Amino Acid Sequence of α-Chain of Hemoglobin IV from Trout, Biochim. Biophys. Acta, 1989, vol. 995, pp. 255–258.

    Google Scholar 

  34. Noble, R.W., Kwiatkowski, L.D., De Young, A., Davis, B.J., Haedrich, R.L., Tam, L.T., and Riggs, F.A., Functional Properties of Hemoglobin from Deep-Sea Fish: Correlation with Depth Distribution and Presence of a Swimbladder, Biochim. Biophys. Acta, 1986, vol. 870, pp. 552–563.

    Google Scholar 

  35. Parkhurst, L.J., Goss, D.J., and Perutz, M.F., Kinetic and Equilibrium Studies on the Role of the β147His in the Root Effect and Cooperativity in Carp Hemoglobin, Biochemistry (Wash.), 1983, vol. 22, pp. 5401–5409.

    Google Scholar 

  36. Nikinmaa, M., Control of Red Cell pH in Teleost Fishes, Ann. Zool. Fenn., 1986, vol. 23, pp. 223–235.

    Google Scholar 

  37. Nikinmaa, M., Adrenergic Regulation of Haemoglobin Oxygen Affinity in Rainbow Trout Red Cells, J. Comp. Physiol., 1983, vol. 152B, pp. 67–72.

    Google Scholar 

  38. Tetens, V. and Christensen, N.J., β-Adrenergic Control of Blood Oxygen Affinity in Acutely Hypoxia Exposed Rainbow Trout, J. Comp. Physiol., 1987, vol. 157B, pp. 667–675.

    Google Scholar 

  39. Perry, S.F. and Thomas, S., The Effects of Endogenous and Exogenous Catecholamines on Blood Respiratory Status during Acute Hypoxia in Rainbow Trout, J. Comp. Physiol., 1991, vol. 161B, pp. 489–497.

    Google Scholar 

  40. Milligan, C.L. and Wood, Ch.M., Regulation of Blood Oxygen Transport and Red Cell pH after Exhaustive Activity in Rainbow Trout and Starry Flounder, J. Exp. Biol., 1987, vol. 133, pp. 263–282.

    Google Scholar 

  41. Fergusson, R.A. and Boutilier, R.G., Metabolic Energy Production during Adrenergic pH Regulation in Red Cells of the Atlantic Salmon, Respir. Physiol., 1988, vol. 74, pp. 65–76.

    Google Scholar 

  42. Lane, H.C. and Tianang, D., Effect of Hypoxia and Hyperoxia on Rainbow Trout Red Cells, Amer. Zool., 1992, vol. 32, p.170A.

    Google Scholar 

  43. Salama, A. and Nikinmaa, M., The Adrenergic Response of Carp Red Cells: Effects of PO2 and pH, J. Exp. Biol., 1988, vol. 136, pp. 405–416.

    Google Scholar 

  44. Bennett, M.B. and Rankin, J.C., Identification of β-Adrenergic Receptors in Teleost Red Blood Cells, Comp. Biochem. Physiol., 1985, vol. 81C, pp. 411–414.

    Google Scholar 

  45. Salama, A. and Nikinmaa, M., The Role of cAMP in the β-Adrenergic Response of Fish Red Blood Cells, Raporttisar. Mat.-luonnontieteenllis tiedekunnan/Joensuun gliopisto, 1991, no. 30, pp. 13–15.

    Google Scholar 

  46. Reid, S.D. and Perry, S.F., The Effects of Hypoxia, in vivo, on Red Blood Cell β-Adrenoreceptors in the Rainbow Trout, Fish Physiol. Biochem., 1995, vol. 14, pp. 217–240.

    Google Scholar 

  47. Reid, S.D. and Perry, S.F., The Effects and Physiological Consequences of Raised Levels of Control on Rainbow Trout Erythrocyte β-Adrenoreceptors, J. Exp. Biol., 1991, vol. 158, pp. 217–240.

    Google Scholar 

  48. Tetens, V., Lykkeboe, G., and Christensen, N.J., Potency of Adrenaline and Noradrenaline for β-Adrenergic Proton Extrusion from Red Cells of Rainbow Trout, J. Exp. Biol., 1988, vol. 134, pp. 267–280.

    Google Scholar 

  49. Nikinmaa, M., Adrenergic Control of Oxygen Transport in Salmonids, Fischerei-Forsch., 1991, vol. 29, pp. 64–65.

    Google Scholar 

  50. Thomas, S., Kinkead, R., Walsh, P.J., Wood, C.M., and Perry, S.F., Desensitization of Adrenaline Induced Red Blood Cell H+ Extrusion in vitro after Chronic Exposure of Rainbow Trout to Moderate Environmental Hypoxia, J. Exp. Biol., 1991, vol. 156, pp. 233–248.

    Google Scholar 

  51. Motais, R., Borgese, F., Scheuring, U., and Garsia-Romeu, F., Glutaraldehyde Fixation of the cAMP-Dependent Na+/H+ Exchanger in Trout Cells, J. Gen. Physiol., 1989, vol. 94, pp. 385–400.

    Google Scholar 

  52. Cossins, A.R. and Kilbey, R.V., The Temperature Dependence of the Adrenergic Na+/H+ Exchanger of Trout Erythrocytes, J. Exp. Biol., 1990, vol. 148, pp. 303–312.

    Google Scholar 

  53. Wood, C.M. and Simmens, H., The Conversion of Plasma HCO3 - to CO2 by Rainbow Trout Red Blood Cells in vitro: Adrenergic Inhibition and the Influence of Oxygenation Status, Fish Physiol. Biochem., 1994, vol. 12, pp. 445–454.

    Google Scholar 

  54. Salama, A., The Role of cAMP in Regulation of β-Adrenergic Response of Rainbow Trout Red Blood Cells, Fish Physiol. Biochem., 1993, vol. 10, pp. 485–490.

    Google Scholar 

  55. Orlov, S.N., Skryabin, G.A., Kotelevtsev, S.V., and Kozlov, Yu.P., Receptor-and Volume-Dependent Regulation of Na/K Pump and Ion Carriers in Fish Erythrocytes, Biol. Nauki, 1990, no. 6, pp. 27–38.

    Google Scholar 

  56. Dallesio, P.M., Di Michele, L., and Powers, D.A., Adrenergic Regulation of Erythrocyte Oxygen Affinity, pH, and Nucleotide Triphosphate/Hemoglobin Ratio in the Mummichog, Physiol. Zool., 1991, vol. 64, pp. 1391–1406.

    Google Scholar 

  57. Orlov, S.N., Cragoe, E.J., and Haenninen, O., Volume-and Catecholamine-Dependent Regulation of Na+/H+ Antiporter and Unidirectional Potassium Fluxes in Salmo trutta Red Blood Cells, J. Comp. Physiol., 1994, vol. 164B, pp. 135–140.

    Google Scholar 

  58. Orlov, S.N. and Skryabin, G.A., Catecholamine-and Volume-Dependent Ion Fluxes in Carp Red Blood Cells, J. Comp. Physiol., 1993, vol. 163B, pp. 413–420.

    Google Scholar 

  59. Guizouarn, H., Harvey, B.J., Borgrse, F., Gabillat, N., Garcia-Romeu, F., and Motais, R., Volume-Activated Cl- Independent and Cl- Dependent K+ Pathways in Trout Red Blood Cells, J. Physiol., London, 1993, vol. 46, pp. 609–623.

    Google Scholar 

  60. Hyde, D.A. and Perry, S.F., Absence of Adrenergic Red Cell pH and Oxygen Content Regulation in American Eel during Hypercapnic Acidosis in vivo and in vitro, J. Comp. Physiol., 1990, vol. 159B, pp. 687–693.

    Google Scholar 

  61. Dallesio, P.M., Di Michele, L., and Powers, D.A., Adrenergic Effects on the Oxygen Affinity and pH of Cultured Erythrocytes and Blood of the Mummichog, Physiol. Zool., 1991, vol. 64, pp. 1407–1425.

    Google Scholar 

  62. Perry, S.F. and Reid, S., The Relationship between β-Adrenoreceptors and Adrenergic Responsiveness in Trout and Eel Erythrocytes, J. Exp. Biol., 1992, vol. 167, pp. 235–250.

    Google Scholar 

  63. Reid, S.D. and Perry, S.F., Quantification of Presumptive Na+/H+ Antiporters of the Erythrocytes of Trout and Eel, Fish Physiol. Biochem., 1994, vol. 12, pp. 455–463.

    Google Scholar 

  64. Chanutin, A. and Curnish, R.R., Effect of Organic and Inorganic Phosphates on the Oxygen Equilibrium of Human Erythrocytes, Arch. Biochem., 1967, vol. 121, pp. 96–102.

    Google Scholar 

  65. Bunn, H.F., Regulation of Hemoglobin Function in Mammals, Amer. Zool., 1980, vol. 20, pp. 199–211.

    Google Scholar 

  66. Bartlett, G.R., Phosphate Compounds in Red Cells of Two Dogfish Sharks: Squalus acanthias and Mustelus canis, Comp. Biochem. Physiol., 1982, vol. 73A, pp. 135–140.

    Google Scholar 

  67. Isaacks, R.E. and Kim, H.D., Erythrocyte Phosphate Composition and Osmotic Fragility in the Australian Lungfish, Neoceratodus fosteri and Osteoglossid, Scleropages schneichrdti, Comp. Biochem. Physiol., 1984, vol. 79A, pp. 667–671.

    Google Scholar 

  68. Southard, J.N., Berry, Ch.R., and Farley, T.M., Multiple Hemoglobins of the Cutthroat Trout, J. Exp. Zool., 1986, vol. 239, pp. 7–16.

    Google Scholar 

  69. Gillen, R.G. and Ridds, A., The Hemoglobin of a Fresh-Water Teleost. I. The Effect of Phosphorylated Organic Compounds upon the Oxygen Equilibria, Comp. Biochem. Physiol., 1971, vol. 38B, pp. 585–595.

    Google Scholar 

  70. Bartlett, G.R., Phosphates Compounds in Vertebrate Red Blood Cells, Amer. Zool., 1980, vol. 20, pp. 108–114.

    Google Scholar 

  71. Leray, C., Patterns of Purine Nucleotides in Some North Sea Fish Erythrocytes, Comp. Biochem. Physiol., 1982, vol. 71B, pp. 77–81.

    Google Scholar 

  72. Coates, M., Paton, B.C., and Thompson, J., High Levels of Inosine Monophosphate in the Erythrocytes of Elasmobranchs, J. Exp. Zool., 1978, vol. 203, pp. 331–337.

    Google Scholar 

  73. Isaacks, R.E., Kim, H.D., and Harkness, D.R., Inositol Diphosphate in Erythrocytes of the Lungfish, Lepidosiren paradoxa, and 2,3-Diphosphoglycerate in Erythrocytes of the Armored Catfish, Pterygoplichtys, Can. J. Zool., 1976, vol. 56, pp. 1014–1016.

    Google Scholar 

  74. Isaacks, R.E., Kim, H.D., and Harkness, D.R., Relationship between Phosphorylated Metabolic Intermediates and Whole Blood Oxygen Affinity in Some Air-Breathing and Water-Breathing Teleosts, Can. J. Zool., 1978, vol. 56, pp. 887–890.

    Google Scholar 

  75. Onwubiko, H.A., Hazzard, J.H., Noble, R.W., and Caughey, W.S., Demonstration of Inositol Hexaphosphate Induced Changes in Structure at Ligand Binding Sites in Carp Hemoglobin Carbonyl, Biochem. Biophys. Res. Commun., 1982, vol. 106, pp. 223–228.

    Google Scholar 

  76. Tamburrini, M., D'Avino, R., Fago, A., Carratore, V., Kunzmann, A., and Di Prisco, G., The Unique Hemoglobin System of an Antarctic Migratory Teleost. Structure and Function of the Three Components, J. Biol. Chem., 1996, vol. 271, pp. 23 780–23 785.

    Google Scholar 

  77. Sauer, J. and Harrington, J.P., Hemoglobin of the Sockeye Salmon, Oncorhynchus nerka, Comp. Biochem. Physiol., 1988, vol. 91A, pp. 109–114.

    Google Scholar 

  78. Coates, M., Studies on the Interaction of Organic Phosphates with Haemoglobin in an Amphibian, a Reptile and Man, Austral. J. Biol. Sci., 1975, vol. 28, pp. 367–378.

    Google Scholar 

  79. Kilmartin, J.V. and Rossi-Barnardi, L., Interaction of Hemoglobin with Hydrogen Ions, Carbon Dioxide and Organic Phosphates, Physiol. Rev., 1973, vol. 53, pp. 836–890.

    Google Scholar 

  80. Wurm, Th. and Alberts, C., Interaction of Allosteric Effectors (ATP, CO2, H+) Modulating Oxygen Affinity of the Hemoglobin in the Carp, J. Comp. Physiol., vol. 159B, pp. 255–261.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soldatov, A.A. Effects of Temperature, pH, and Organic Phosphates on Fish Hemoglobins. Journal of Evolutionary Biochemistry and Physiology 39, 159–168 (2003). https://doi.org/10.1023/A:1025511315064

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025511315064

Keywords

Navigation