Skip to main content
Log in

L-Cysteine Increases Glucose Uptake in Mouse Soleus Muscle and SH-SY5Y Cells

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Previous investigation demonstrated the potential of L-cysteine (L-Cys) at high concentrations to cause hypoglycemia in mice totally deprived of insulin. For further elucidation of the glucose-lowering mechanism, glucose uptake and quantity of glucose transporters (GLUTs 3 and 4) in mouse soleus muscle and C2C12 muscle cells, as well as in human SH-SY5Y neuroblastoma cells, were investigated. A marked enhancement of glucose uptake was demonstrated, peaking at 5.0 mM L-Cys in soleus muscle (P < 0.05) and SH-SY5Y cells (P < 0.001), respectively. In contrast, glucose uptake was not affected in the C2C12 muscle cells. Kinetic analysis of the SH-SY5Y glucose uptake showed a 2.5-fold increase in maximum transport velocity compared with controls (P < 0.001). In addition, both GLUT3 and GLUT4 levels were increased following exposure to L-Cys. Our findings point to a possible hypoglycemic effect of L-Cys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auer, R.N. (1986). Progress review: Hypoglycemic brain damage. Stroke 17:699-708.

    Google Scholar 

  • Back, S.A., Khan, R., Gan, X., Rosenberg, P.A., and Volpe, J.J. (1999). A new Alamar Blue viability assay to rapidly quantify oligodendrocyte death. J. Neurosci. Methods 91:47-54.

    Google Scholar 

  • Boyle, P.J., Kempers, S.F., O'Connor, A.M., and Nagy, R.J. (1995). Brain glucose uptake and unawareness of hypoglycemia in patients with insulin-dependent diabetes mellitus. N. Engl. J. Med. 333:1726-1731.

    Google Scholar 

  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.

    Google Scholar 

  • Brozinick, J.T., Jr., Etgen, G.J., Jr., Yaspelkis, B.B, III, and Ivy, J.L. (1994). The effects of muscle contraction and insulin on glucose-transporter translocation in rat skeletal muscle. Biochem. J. 297:539-545.

    Google Scholar 

  • Charron, M.J., and Kahn, B.B. (1990). Divergent molecular mechanisms for insulin-resistant glucose transport in muscle and adipose cells in vivo. J. Biol. Chem. 265:7994-8000.

    Google Scholar 

  • Do, K.Q., Mattenberger, M., Streit, P., and Cuénod, M. (1986). In vitro release of endogenous excitatory sulfur-containing amino acids from various rat brain regions. J. Neurochem. 46:779-786.

    Google Scholar 

  • Gazit, V., Taha, A., Pick, C.G., Rozenberg, B., and Katz, Y. (1995). L-Cysteine induces a long-term neurobehavioral injury in mice [Abstract]. Isr. J. Med. Sci. 31:762.

    Google Scholar 

  • Kahn, B.B. (1992). Facilitative glucose transporters: Regulatory mechanisms and dysregulation in diabetes. J. Clin. Invest. 89:1367-1374.

    Google Scholar 

  • Kamei, Y., Tsutsumi, O., Yamakawa, A., Oka, Y., Taketani, Y., and Imaki, J. (1999). Maternal epidermal growth factor deficiency causes fetal hypoglycemia and intrauterine growth retardation in mice: Possible involvement of placental glucose transporter GLUT3 expression. Endocrinology 140:4236-4243.

    Google Scholar 

  • Kotliar, N., and Pilch, P.F. (1992). Expression of the glucose transporter isoform GLUT 4 is insufficient to confer insulin-regulatable hexose uptake to cultured muscle cells. Mol. Endocrinol. 6:337-345.

    Google Scholar 

  • Lund, S., Flyvbjerg, A., Holman, G.D., Larsen, F.S., Pedersen, O., and Schmitz, O. (1994). Comparative effects of IGF-I and insulin on the glucose transporter system in rat muscle. Am. J. Physiol. 267:E461-E466.

    Google Scholar 

  • Matthews, C.C., Odeh, H.M., and Feldman, E.L. (1997). Insulin-like growth factor-I is an osmoprotectant in human neuroblastoma cells. Neuroscience 79:525-534.

    Google Scholar 

  • Mueckler, M., Caruso, C., Baldwin, S.A., Panico, M., Blench, I., Morris, H.R., Allard, W.J., Lienhard, G.E., and Lodish, H.F. (1985). Sequence and structure of a human glucose transporter. Science 229:941-945.

    Google Scholar 

  • Olney, J.W., and Ho, O.-L. (1970). Brain damage in infant mice following oral intake of glutamate, aspartate or cysteine. Nature 227:609-611.

    Google Scholar 

  • Olney, J.W., Zorumski, C., Price, M.T., and Labruyere, J. (1990). L-Cysteine, a bicarbonate-sensitive endogenous excitotoxin. Science 248:596-599.

    Google Scholar 

  • Stein, W.D., Eilam, Y., and Lieb, W.R. (1974). Active transport of cations across biological membranes. Ann. N. Y. Acad. Sci. 227:328-336.

    Google Scholar 

  • Strout, H.V., Vicario, P.P., Biswas, C., Saperstein, R., Brady, E.J., Pilch, P.F., and Berger, J. (1990). Vanadate treatment of streptozotocin diabetic rats restores expression of the insulin-responsive glucose transporter in skeletal muscle. Endocrinology 126:2728-2732.

    Google Scholar 

  • Suzuki, K., and Kono, T. (1980). Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc. Natl. Acad. Sci. U.S.A. 77:2542-2545.

    Google Scholar 

  • Thorens, B., Charron, M.J., and Lodish, H.F. (1990). Molecular physiology of glucose transporters. Diabetes Care 13:209-218.

    Google Scholar 

  • Tortorella, L.L., and Pilch, P.F. (2002). C2C12 myocytes lack an insulin-responsive vesicular compartment despite dexamethasone-induced GLUT4 expression. Am. J. Physiol. Endocrinol. Metab. 283(3):E514-E524.

    Google Scholar 

  • Walum, E., and Edström, A. (1976). Kinetics of 2-deoxy-D-glucose transport into cultured mouse neuroblastoma cells. Exp. Cell Res. 97:15-22.

    Google Scholar 

  • Zhang, J.Z., Behrooz, A., and Ismail-Beigi, F. (1999). Regulation of glucose transport by hypoxia. Am. J. Kidney Dis. 34:189-202.

    Google Scholar 

  • Zivin, J.A., and Waud, D.R. (1982). How to analyze binding, enzyme and uptake data: The simplest case, a single phase. Life Sci. 30:1407-1422.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gazit, V., Ben-Abraham, R., Vofsi, O. et al. L-Cysteine Increases Glucose Uptake in Mouse Soleus Muscle and SH-SY5Y Cells. Metab Brain Dis 18, 221–231 (2003). https://doi.org/10.1023/A:1025507216746

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025507216746

Navigation