Journal of Mammalian Evolution

, Volume 10, Issue 1–2, pp 131–194 | Cite as

Relationships of Endemic African Mammals and Their Fossil Relatives Based on Morphological and Molecular Evidence

  • Robert J. Asher
  • Michael J. Novacek
  • Jonathan H. Geisler


Analyses of anatomical and DNA sequence data run on a parallel supercomputer that include fossil taxa support the inclusion of tenrecs and golden moles in the Afrotheria, an endemic African clade of placental mammals. According to weighting schemes of morphological and molecular data that maximize congruence, extinct members of the afrotherian crown group include embrithopods, Plesiorycteropus, desmostylians, and the “condylarths” Hyopsodus, Meniscotherium, and possibly Phenacodus. By influencing the optimization of anatomical characters, molecular data have a large influence on the relationships of several extinct taxa. The inclusion of fossils and morphological data increases support for an elephant-sea cow clade within Paenungulata and identifies ancient, northern elements of a clade whose living members in contrast suggest an historically Gondwanan distribution. In addition, maximally congruent topologies support the position of Afrotheria as well-nested, not basal, within Placentalia. This pattern does not accord with the recent hypothesis that the divergence of placental mammals co-occurred with the tectonic separation of Africa and South America.

tenrecs golden moles Afrotheria Lipotyphla Insectivora Placentalia phylogeny fossils 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adkins, R. M., Walton, A. H., and Honeycutt, R. L. (2003). Higher-level systematics of rodents and divergence time estimates based on two congruent nuclear genes. Mol. Phylogenet. Evol. 26: 409–420.Google Scholar
  2. Agur, A. M. R., and Lee, M. J. (1991). Grant's Atlas of Anatomy, 9th edn. Williams and Wilkins, Baltimore.Google Scholar
  3. Amrine, H. M., and Springer, M. S. (1999). Maximum likelihood analysis of the tethythere hypothesis. J. Mammal. Evol. 6: 161–176.Google Scholar
  4. Andrews, C. W. (1906). A Descriptive Catalogue of the Tertiary Vertebrata of the Fayum, Egypt, British Museum of Natural History, London.Google Scholar
  5. Arnason, U., Addegoke, J. A., Bodin, K., Born, E. W., Esa, Y. B., Gullberg, A., Nilsson, M., Short, R., Xu, X., and Janke, A. (2002). Mammalian mitogenomic relationships and the root of the eutherian tree. Proc. Natl. Acad. Sci. U.S.A. 99: 8151–8156.Google Scholar
  6. Asher, R. J. (1999). A morphological basis for assessing the phylogeny of the “Tenrecoidea” (Mammalia, Lipotyphla). Cladistics 15: 231–252.Google Scholar
  7. Asher, R. J. (2000). Phylogenetic History of Tenrecs and Other Insectivoran Mammals. Ph.D. Dissertation, State University of New York, Stony Brook.Google Scholar
  8. Asher, R. J. (2001). Cranial anatomy in tenrecid insectivorans: Character evolution across competing phylogenies. Amer. Mus. Novit. 3352: 1–54.Google Scholar
  9. Asher, R. J. (2003). Phylogenetics of the Tenrecidae (Mammalia): A response to Douady et al., 2002. Mol. Phylogenet. Evol. 26: 328–330.Google Scholar
  10. Barnes, L. G. (1990). The fossil record and evolutionary relationships of the genus Tursiops. In: The Bottlenosed Dolphin, S. Leatherwood and R. R. Reeves, eds., pp. 3–26, Academic Press, New York.Google Scholar
  11. Beard, K. C., and MacPhee, R. D. E. (1994). Cranial anatomy of Shoshonius and the antiquity of the Anthropoidea. In: Anthropoid Origins, J. G. Fleagle and R. F. Kay, eds., pp. 55–97, Plenum, New York.Google Scholar
  12. Butler, P. M. (1956). The skull of Ictops and the classification of the Insectivora. Proc. Zool. Soc. Lond. 126: 453–481.Google Scholar
  13. Butler, P. M. (1988). Phylogeny of the insectivores. In: Phylogeny and Classification of the Tetrapods, Vol. 2, M. J. Benton, ed., pp. 117–141, Clarendon Press, Oxford.Google Scholar
  14. Carter, A. M. (2001). Evolution of the placenta and fetal membranes seen in the light of molecular phylogenetics. Placenta 22: 800–807.Google Scholar
  15. Cartmill, M. (1978). The orbital mosaic in prosimians and the use of variable traits in systematics. Folia Primatol. 30(2): 89–114.Google Scholar
  16. Cartmill, M. (1980). Morphology, function, and evolution of the anthropoid postorbital septum. In: Evolutionary Biology of the New World Monkeys and Continental Drift. R. L. Ciochon and A. B. Chiarelli, eds., pp. 243–274, Plenum, New York.Google Scholar
  17. Cartmill, M., and MacPhee, R. D. E. (1980). Tupaiid affinities: The evidence of the carotid arteries and cranial skeleton. In: Comparative Biology and Evolutionary Relationships of Tree Shrews, P. Luckett, ed., pp. 95–132, Plenum, New York.Google Scholar
  18. Cifelli, R. (1982). The petrosal structure of Hyopsodus with respect to that of some other ungulates, and its phylogenetic implications. J. Paleontol. 56: 796–805.Google Scholar
  19. Clark, J. M. (1991). A new early Miocene species of Paleoparadoxia (Mammalia: Desmostylia) from California. J. Vertebr. Paleontol. 11: 490–508.Google Scholar
  20. Colless, D. H. (1980). Congruence between morphometric and allozyme data for Menidia species: A reappraisal. Syst. Zool. 29: 288–299.Google Scholar
  21. Court, N. (1990). Periotic anatomy of Arsinoitherium (Mammalia, Embrithopoda) and its phylogenetic implications. J. Vertebr. Paleontol. 10: 170–182.Google Scholar
  22. Court, N. (1992). The skull of Arsinoitherium (Mammalia, Embrithopoda) and the higher order phylogenetic relationships of ungulate mammals. Palaeovertebrata (Montpelier) 22: 1–43.Google Scholar
  23. Court, N. (1993). Morphology and functional anatomy of the postcranial skeleton in Arsinoitherium (Mammalia, Embrithopoda). Palaeontographica (Stuttgart) A 226: 125–169.Google Scholar
  24. Court, N. (1994). The periotic of Moeritherium (Mammalia, Proboscidea): Homology or homoplasy in the ear region of Tethytheria McKenna, 1975. Zool. J. Linn. Soc. 112: 13–28.Google Scholar
  25. Court, N. (1995). A new species of Numidotherium (Mammalia, Proboscidea) from the Eocene of Libya and the early phylogeny of the Proboscidea. J. Vertebr. Paleontol. 15: 650–671.Google Scholar
  26. Dathe, F. (1982). Megaptera hubachi n. sp., ein fossiler Bartenwahl aus marinen Sandsteinschichten des tieferen Pliozäns Chiles. Z. Geol. Wiss. 11: 813–848.Google Scholar
  27. Domning, D., Ray, C. E., and McKenna, M. C. (1986). Two new OIigocene desmostylians and a discussion of tethytherian systematics. Smithson. Contrib. Paleobiol. 59: 1–56.Google Scholar
  28. Douady, C. J., Catzeflis, F., Kao, D. J., Springer, M. S., and Stanhope, M. J. (2002a). Molecular evidence for the monophyly of tenrecidae (Mammalia) and the timing of the colonization of Madagascar by Malagasy tenrecs. Mol. Phylogenet. Evol. 22: 357–363.Google Scholar
  29. Douady, C. J., Chatelier, P. I., Madsen, O., de Jong, W. W., Catzeflis, F., Springer, M. S., and Stanhope, M. J. (2002b). Molecular phylogenetic evidence confirming the Eulipotyphla concept and in support of hedgehogs as the sister group to shrews. Mol. Phylogenet. Evol. 25: 200–209.Google Scholar
  30. Douady, C. J., Catzeflis, F., Springer, M. S., and Stanhope, M. J. (2003). Phylogenetics of the Tenrecidae (Mammalia): A reply to Asher. Mol. Phylogenet. Evol. 26: 331–332.Google Scholar
  31. Downton, M., and Austin, A. D. (2002). Increased congruence does not necessarily indicate increased phylogenetic accuracy. Syst. Biol. 51: 19–31.Google Scholar
  32. Emerson, G. L., Kilpatrick, C. W., McNiff, B. E., Ottenwalder, J., and Allard, M. W. (1999). Phylogenetic relationships of the order Insectivora based on complete 12s rRNA sequences from mitochondria. Cladistics 15: 221–230.Google Scholar
  33. Felsenstein, J. (1978). Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27: 401–410.Google Scholar
  34. Felsenstein, J. (1988). Phylogenies from molecular sequences: Inference and reliability. Annu. Rev. Genet. 22: 521–565.Google Scholar
  35. Fischer, M. S. (1986). Die Stellung der Schliefer (Hyracoidea) im phylogenetischen System der Eutheria. Cour. Forsch. Inst. Senckenberg. 84: 1–132.Google Scholar
  36. Fischer, M. S. (1998). Die Lokomotion von Procavia capensis (Mammalia: Hyracoidea): zur Evolution des Bewegungssystems bei Saugetieren. Abhandlungen des Naturwissenschaftlichen Vereins in Hamburg. 33: 1–188.Google Scholar
  37. Fischer, M., and P. Tassy. (1993). The interrelation between Proboscidea, Sirenia, Hyracoidea, and Mesaxonia: The morphological evidence. In: Mammal Phylogeny, Vol. 2: Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 217–234, Springer-Verlag, New York.Google Scholar
  38. Fleagle, J. G. (1999). Primate Adaptation and Evolution, 2nd edn. Academic Press, San Diego.Google Scholar
  39. Frost, D. R., Rodrigues, M. T., Grant, T., and Titus, T. (2001). Phylogenetics of the lizard genus Tropidurus (Squamata: Tropiduridae). Mol. Phylogenet. Evol. 21: 352–371.Google Scholar
  40. Frost, D. R., Wozencraft, C., and Hoffman, R. S. (1991). Phylogenetic relationships of hedgehogs and gymnures (Mammalia: Insectivora: Erinaceidae). Smithson. Contrib. Zool. 518: 1–69.Google Scholar
  41. Gatesy, J., DeSalle, R., and Wheeler, W. (1993). Alignment ambiguous nucleotide sites and the exclusion of systematic data. Mol. Phylogenet. Evol. 2: 152–157.Google Scholar
  42. Gatesy, J., Mathee, C., DeSalle, R., Hayashi, C. (2002). Resolution of a Supertree/Supermatrix Paradox. Syst. Biol. 51: 652–664.Google Scholar
  43. Gaudin, T. J., Wible, J. R., Hopson, J. A., and Turnbull, W. D. (1996). Reexamination of the morphological evidence for the cohort Epitheria (Mammlia, Eutheria) J. Mammal. Evol. 3: 31–79.Google Scholar
  44. Gazin, C. L. (1956). A study of the Eocene condylarthran mammal Hyopsodus. Smithson. Misc. Collect. 131: 1–57.Google Scholar
  45. Gazin, C. L. (1965). A study of the early Tertiary condylarthran mammal Meniscotherium. Smithson. Misc. Collect. 149: 1–98.Google Scholar
  46. Gazin, C. L. (1968). A study of the Eocene condylarthran mammal Hyopsodus. Smithson. Misc. Collect. 153: 1–90.Google Scholar
  47. Geisler, J. H. (2001). New morphological evidence for the phylogeny of Artiodactyla, Cetacea, and Mesonychidae. Amer. Mus. Novit. 3344: 1–53.Google Scholar
  48. Geisler, J. H., and Luo, Z. (1998). Relationships of Cetacea to terrestrial ungulates and the evolution of ranial vasculature in Cete. In: The Emergence of Whales, J. G. M. Thewissen, ed., pp. 163–212, Plenum, New York.Google Scholar
  49. Gheerbrandt, E., Sudre, J., Iarochene, M., and Moumni, A. (2001). First ascertained African “condylarth” mammals from the earliest Ypresian of the Ouled Abdoun Basin, Morocco. J. Vertebr. Paleontol. 21: 107–118.Google Scholar
  50. Giere, P. (2002). Grundplan rekonstruktion und Ontogenese der Orbitalregion der “Eulipotyphla” (Mammalia). PhD Thesis, Humboldt Univ. Wissenschaft und Technik Verlag, Berlin.Google Scholar
  51. Giribet, G., Edgecomb, G. D., and Wheeler, W.C. (2001). Arthropod phylogeny based on eight molecular loci and morphology. Nature 413: 157–161.Google Scholar
  52. Goloboff, P. A. (1999). NONA, Version 2.0. Fundación e Instituto Miguel Lillo, Tucumán, Argentina. Download at Scholar
  53. Gregory, W. K. (1910). The orders of mammals. Bull. Amer. Mus. Nat. Hist. 27: 1–524.Google Scholar
  54. Grzimek, B. (1975). Grzimek's Animal Life Encyclopedia, I–IV, Van Nostrand Rheinhold, New York.Google Scholar
  55. Hermanson, J. W., and MacFadden, B. J. (1996). Evolutionary and functional morphology of the knee in fossil and extant horses (Equidae). J. Vertebr. Paleontol. 16: 349–357.Google Scholar
  56. Horovitz, I. (1999). A phylogenetic study of living and fossil platyrrhines. Amer. Mus. Novit. 3269: 1–40.Google Scholar
  57. Horovitz, I. (2000). The tarsus of Ukhaatherium nessovi (Eutheria, Mammalia) from the Late Cretaceous of Mongolia: An appraisal of the evolution of the ankle in basal therians. J. Vertebr. Paleontol. 20: 547–560.Google Scholar
  58. Ijiri, S., and Kamei, T. (1961). On the skulls of Desmostylus mirabilis Nagao from South Sakhalin and of Palaeoparadoxia tabatai Tokunaga from Gifu prefecture, Japan [in Japanese]. Earth Sci. 53: 1–27.Google Scholar
  59. Janies, D. A., and Wheeler, W.C. (2001). Efficiency of parallel direct optimization. Cladistics 17: S71-S82.Google Scholar
  60. Johnson, P. A., and Fox, R. C. (1984). Paleocene and Late Cretaceous mammals from Saskatchewan, Canada. Palaeontographica Abt. A. 186: 163–222.Google Scholar
  61. Kamei, T., and Okazaki, Y. (1975). Neogene desmostylid and proboscidean fossils from Japan. Atlas and Jpn. Fossils 34(199 and 201): 1–4.Google Scholar
  62. Kielan-Jaworowska, Z. (1979). Evolution of the therian mammals in the Late Cretaceous of Asia. Part III. Postcranial skeleton in Zalambdalestidae. Palaeontol. Pol. 38: 3–41.Google Scholar
  63. Kielan Jaworowska, Z. (1984). Evolution of the therian mammals in the Late Cretaceous of Asia. Part V. Skull structure in Zalambdalestidae Palaeontol. Pol. 46: 107–117.Google Scholar
  64. Krause, D. W., Rodgers, R. R., Forster, C. A., Hartman, J. H., Buckley, G. A., and Sampson, S. D. (1999). Late Cretaceous vertebrate fauna of Madagascar: Implications for Gondwanan paleobiogeography. GSA Today 9: 1–7.Google Scholar
  65. Lee, M. S. Y. (2001). Unalignable sequences and molecular evolution. Trends Ecol. Evol. 16: 681–685.Google Scholar
  66. Lin, Y.-H., McLeanachan, P. A., Gore, A. R., Phillips, M. J., Ota, R., Hendy, M. D., and Penny, D. (2002a). Four new mitochondrial genomes and the increased stability of evolutionary trees of mammals from improved taxon sampling. Mol. Biol. Evol. 19: 2060–2070.Google Scholar
  67. Lin, Y.-H., Waddell, P., and Penny, D. (2002b). Pika and vole mitochondrial genomes increase support for both rodent monophyly and Glires. Gene 294: 119–129.Google Scholar
  68. Lillegraven, J. A. (1969). Latest Cretaceous mammals of upper part of Edmonton Formation of Alberta, Canada, and review of marsupial-placental dichotomy in mammalian evolution. Univ. Kansas Paleontol. Contrib. 50(vertebrata 12): 1–122.Google Scholar
  69. Lillegraven, J. A. (1984). Why was there a marsupial-placental dichotomy? In: Mammals: Notes from a Short Course, Vol. 8: Studies in Geology, P. D. Gingerich and C. E. Badgley, eds., pp. 72–86, University of Tennessee, Department of Geological Science, Knoxville.Google Scholar
  70. Lillegraven, J. A. (1985). Use of the term “trophoblast” for tissues in therian mammals. J. Morphol. 183: 293–299.Google Scholar
  71. Luckett, W. P. (1977). Ontogeny of amniote fetal membrances and their application to phylogeny. In: Major Patterns in Vertebrate Evolution, M. K. Hecht, P. C. Goody, and B. M. Hecht, eds., pp. 439–516, Plenum, New York.Google Scholar
  72. Luckett, W. P. (1985). Superordinal and intraordinal affinities of rodents: Developmental evidence from the dentition and placentation. In: Evolutionary Relationships Among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 227–276, Plenum, New York.Google Scholar
  73. Luckett, W. P. (1993). Uses and limitations of mammalian fetal membrances and placenta for phylogenetic reconstruction. J. Exp. Zool. 266: 514–527.Google Scholar
  74. Luo, Z. (1998). Homology and transformation of cetacean ectotympanic structures. In: The Emergence of Whales, J. G. M. Thewissen, ed., pp. 269–301, Plenum, New York.Google Scholar
  75. Luo, Z., and Gingerich, P. D. (1999). Terrestrial Mesonychia to aquatic Cetacea: Transformation of the basicranium and evolution of hearing in whales. Univ. Mich. Pap. Paleontol. 31: 1–98.Google Scholar
  76. MacPhee, R. D. E. (1979.) Entotympanics, ontogeny, and primates. Folia Primatol. 31: 23–47.Google Scholar
  77. MacPhee, R. D. E. (1994). Morphology, adaptations, and relationships of Plesiorycteropus, and a diagnosis of a new order of eutherian mammals. Bull. Amer. Mus. Nat. Hist. 220: 1–214.Google Scholar
  78. MacPhee, R. D. E., and Novacek, M. J. (1993). Definition and relationships of Lipotyphla. In: Mammal Phylogeny, Vol. 2: Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 13–31, Springer-Verlag, New York.Google Scholar
  79. MacPhee, R. D. E., Novacek, M. J., and Storch, G. (1988). Basicranial morphology of Early Tertiary erinaceomorphs and the origin of primates. Amer. Mus. Novit. 2921: 1–42.Google Scholar
  80. Madsen, O., Scally, M., Douady, C. J., Kao, D. J., DeBry, R. W., Adkins, R., Amrine, H. M., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001). Parallel adaptive radiations in two major clades of placental mammals. Nature 409: 610–614.Google Scholar
  81. Mahboubi, M., Ameur, J. Y, Crochet, Y., and Jaeger, J. J. (1986). El Kohol (Saharan Atlas, Algeria), a new Eocene mammal locality in northwestern Africa. Palaeontographica Abt. A 192: 15–49.Google Scholar
  82. Malia, M. J., Adkins, R. M., and Allard, M. W. (2002). Molecular support for Afrotheria and the polyphyly of Lipotyphla based on analyses of the growth hormone receptor gene. Mol. Phylogenet. Evol. 24: 91–101.Google Scholar
  83. Matsumoto, H. (1923). A contribution to the knowledge of Moeritherium. Bull. Amer. Mus. Nat. Hist. 48: 97–139.Google Scholar
  84. McDowell, S. B., Jr. (1958). The Greater Antillean insectivores. Bull. Amer. Mus. Nat. Hist. 115: 113–214.Google Scholar
  85. McKenna, M. C. (1963). New evidence against tupaioid affinities of the mammlian family Anagalidae. Amer. Mus. Novit. 2158: 1–16.Google Scholar
  86. McKenna, M. C., and BellS. K. (1997). Classification of Mammals Above the Species Level, Columbia University Press, New York.Google Scholar
  87. McKenna, M. C., and Manning, R. (1977). Affinities and palaeobiogeographic significance of the Mongolian Paleogene genus Phenacolophus. Geobios Mem. Spec. 1: 61–85.Google Scholar
  88. Meng, J., Hu, Y., and Li, C. (2003). The osteology of Rhombomylus (Mammalia: Glires): Implications for the phylogeny and evolution of Glires. Bull. Amer. Mus. Nat. Hist. 275: 1–247.Google Scholar
  89. Meng, J., and Wyss, A. (2001). The morphology of Tribosphenomys (Rodentiaformes, Mammalia): Phylogenetic implications for basal Glires.J. Mammal. Evol. 8: 1–72.Google Scholar
  90. Millar, J. S. (1981). Pre-partum reproductive characteristics of eutherian mammals. Evolution. 35: 1149–1163.Google Scholar
  91. Mossman, H. W. (1987). Vertebrate Fetal Membranes, Rutgers University Press, New Brunswick.Google Scholar
  92. Mouchaty, S. K., Gullberg, A., Janke, A., and Arnason, U. (2000). Phylogenetic position of the tenrecs (Mammalia: Tenrecidae) of Madagascar based on analysis of the complete mitochondrial genome sequence of Echinops telfairi. Zoologica Scripta 29: 307–317.Google Scholar
  93. Murphy, W. J., Elzirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A., and O'Brien, S. J. (2001a). Molecular phylogenetics and the origin of placental mammals. Nature 409: 614–618.Google Scholar
  94. Murphy, W. J., Eizirik, E., O'Brien, S. J., Madsen, O., Scally, M., Douady, C. J., Teeling, E., Ryder, O. A., Stanhope, M. J., deJong, W. W., and Springer, M. S. (2001b). Resolution of the early placental mammal radiation using Baysian phylogenetics. Science 294: 2348–2351.Google Scholar
  95. Novacek, M. J. (1977). Aspects of the problem of variation, origin, and evolution of the eutherian auditory bulla. Mammal. Rev. 7: 131–149.Google Scholar
  96. Novacek, M. J. (1986). The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bull. Amer. Mus. Nat. Hist. 183: 1–111.Google Scholar
  97. Novacek, M. J. (1989). Higher mammal phylogeny: The morphological-molecular synthesis. In: The Hierarchy of Life, B. Fernholm, K. Bremer, and H. Jörnvall, H., eds., pp. 421–435, Elsevier, Amsterdam.Google Scholar
  98. Novacek, M. J. (1991). “All tree histograms” and the evaluation of cladistic evidence: Some ambiguities. Cladistics 7: 345–349.Google Scholar
  99. Novacek, M. J. (1992). Mammal phylogeny: Shaking the tree. Nature 356: 121–125.Google Scholar
  100. Novacek, M. J., Rougier, G. W., Wible, J. R., McKenna, M. C., Dashzeveg, D., and Horovitz, I. (1997). Epipubic bones in eutherian mammals from the late Cretaceous of Mongolia. Nature 389: 483–486.Google Scholar
  101. Novacek, M. J., and Wyss, A. R. (1986). Higher level relationships of the recent eutherian orders: The morphological evidence. Cladistics 2: 257–287.Google Scholar
  102. O'Leary, M. O., and J. H. Geisler. (1999). The position of Cetace' within Mammlia: Phylogenetic analysis of morphological data from extinct and extant taxa. Syst. Biol. 48: 455–490.Google Scholar
  103. Pol, D., and Siddall, M. E. (2001). Biases in maximum likelihood and parsimony: A simulation approach to a 10-taxon case. Cladistics 17: 266–281.Google Scholar
  104. Radinsky, L. B. (1969). The early evolution of the Perissodactyla. Evolution 23: 308–328.Google Scholar
  105. Reinhart, R. H. (1959). A review of the Sirenia and Desmostylia. Univ. Calif. Pub. Geol. Sci. 36: 1–146.Google Scholar
  106. Renfree, M. B. (1993). Ontogeny, fenetic control, and phylogeny of female reproduction in monotreme and therian mammals. In: Mammal Phylogeny, Vol. 1: Mes. Diff, Multi, Mono, Early Therians, and Mammals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 4–20, Springer-Verlag, New York.Google Scholar
  107. Rose, K. D., and Emry, R. J. (1993). Relationships of Xenarthra, Pholidota and fossil “edentates”: The morphological evidence. In: Mammal Phylogeny, Vol. 2: Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 81–102, Springer-Verlag, New York.Google Scholar
  108. Ross, C. F. (1995). Muscular and osseous anatomy of the primate anterior temporal fossa and the functions of the postorbital septum. Amer. J. Phys. Anthropol. 98: 275–306.Google Scholar
  109. Ross, C. F., Williams, B., and Kay, R. F. (1998). Phylogenetic analysis of anthropoid relationships. J. Hum. Evol. 35: 221–306.Google Scholar
  110. Schulmeister, S., Wheeler, W. C., and Carpenter, J. M. (2002). Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) using sensitivity analysis. Cladistics 18: 455–484.Google Scholar
  111. Schutt, W. A., and Simmons, N. B. (1998). Morphology and homology of the chiropteran calcar, with comments on the phylogenetic relationships of Archaeopteropus. J. Mammal. Evol. 5: 1–32.Google Scholar
  112. Shikama, T. (1966). Postcranial skeletons of Japanese demostylians. Paleontol. Soc. Jpn. Sp. Paper 12: 1–202.Google Scholar
  113. Shoshani, J., and McKenna, M. C. (1998). Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data. Mol. Phylogenet. Evol. 9: 572–584.Google Scholar
  114. Shoshani, J., West, R. M., Court, N., Savage, R. J. G., and Harris, J. M. (1996). The earliest proboscideans: General plan, taxonomy, and palaeoecology. In: The Proboscidea: Evolution and Paleoecology of Elephants and Their Relatives, J., Shoshani and P. Tassy, eds., pp. 57–75, Oxford University Press, Oxford.Google Scholar
  115. Siddall, M. E. (1998). Success of parsimony in the four-taxon case: Long-branch repulsion by likelihood in the Farris zone. Cladistics 14: 209–220.Google Scholar
  116. Siddall, M. E., and Whiting, M. F. (1999). Long branch abstractions. Cladistics 15: 9–24.Google Scholar
  117. Simmons, N. B. (1994). The case for chiropteran monophyly. Amer. Mus. Novit. 3103: 1–54.Google Scholar
  118. Simmons, N. B. (1995). Bat reltionships and the origin of flight. Symp. Zool. Soc. Lond. 67: 27–43.Google Scholar
  119. Simmons, N. B., and Geisler, J. H. (1998). Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments of the evolution of echolocation and foraging strategies in Microchiroptera. Bull. Amer. Mus. Nat. Hist. 235: 1–182.Google Scholar
  120. Simons., E. L., and Rasmussen, D. T. (1989). Cranial morphology of Aegyptopithecus and Tarsius and the question of the tarsier-anthropoidean clade. Amer. J. Phys. Anthropol., 79: 1–23.Google Scholar
  121. Simpson, G. G. (1931). A new insectivore from the Oligocene, Ulan Gochu horizon of Mongolia. Amer. Mus. Novit. 505: 1.Google Scholar
  122. Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bull. Amer. Mus. Nat. Hist. 85: 1–350.Google Scholar
  123. Smith, A. B. (1998). What does paleontology contribute to systematics in a molecular world? Mol. Phylogenet. Evol. 9: 437–447.Google Scholar
  124. Springer, M. S., Murphy, W. J., Eizirik, E., and O'Brien, S. J. (2003). Placental mammal diversification and the Cretaceous Tertiary boundary. Proc. Natl. Acad. Sci. U.S.A. 100: 1056–1061.Google Scholar
  125. Stanhope, M. J., Waddell, V. G., Madsen, O., de Jong, W. W., Hedges, S. B., Cleven, G. C., Kao, D., and Springer, M.S. (1998). Molecular evidence for multiple origins of the Insectivora and for a new order of endemic African mammals. Proc. Natl. Acad. Sci. U.S.A. 95: 9967–9972.Google Scholar
  126. Starck, D. (1995). Lehrbuch der Speziellen Zoologie; Band II: Wirbeltiere; Teile 1–2, Saeugetiere, Gustav Fischer Verlag, Jena.Google Scholar
  127. Swofford, D. L. (2000). Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b10, Sinauer Associates, Sunderland, MA.Google Scholar
  128. Swofford, D. L., Waddell, P. J., Huelsenbeck, J. P., Foster, P. G., Lewis, P. O., and Rogers, J. S. (2001). Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Syst. Biol. 50: 525–539.Google Scholar
  129. Szalay, F. S., and Lucas, S. (1993). Cranioskeletal morphology of archontans, and diagnoses of Chiroptera, Volitantia, and Archonta. In: Primates and Their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 187–226, Plenum, New York.Google Scholar
  130. Tabuce, R., Coiffait, B., Coiffait, P.-E., Mahboubi, M., and Jaeger, J.-J. (2001). A new genus of Macroscelidea (Mammalia) from the Eocene of Algeria: A possible origin of elephant shrews. J. Vertebr. Paleontol. 21: 535–546.Google Scholar
  131. Tassy, P. (1981). Le crane de Moeritherium (Proboscidea, Mammalia) de l'Eocene de Dor el Talha (Libye) et le probleme de la classification phylogenetique du genre dans les Tethytheria. Bull. Mus Natn. Hist. Nat. 3: 87–147.Google Scholar
  132. Thewissen, J. G. M. (1989). Mammlian frontal diploic vein and the human foramen caecum. Anat. Rec. 223: 242–244.Google Scholar
  133. Thewissen, J. G. M. (1990). Evolution of Paleocene and Eocene Phenacodontidae (Mammalia, Condylarthra). Univ. Mich. Pap. Paleontol. 29: 1–107.Google Scholar
  134. Thewissen, J. G. M. (1994). Phylogenetic aspects of cetacean origins: A morpholoical perspective. J. Mammal. Evol. 2: 157–184.Google Scholar
  135. Thewissen, J. G. M., and Domning, D. (1992). The role of phenacodontids in the origin of the modern orders of ungulate mammals. J. Vertebr. Paleontol. 12: 494.Google Scholar
  136. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The CLUSTAL-X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleie. Acids Res. 25: 4876–4882.Google Scholar
  137. True, F. W. (1904). The whalebone whales of the western North Atlantic. Smithson. Contrib. Knowledge 33: 1–332.Google Scholar
  138. Vanderhoof, V. L. (1937). A study of the Miocene sirenian Desmostylus. Univ. Calif. Pubs. Geol. Sci. 24: 119–262.Google Scholar
  139. Van der Klaauw, C. J. (1931). The auditory bulla in some fossil mammals, with a general introduction to this region of the skull. Bull. Amer. Mus. Nat. Hist. 62: 1–352.Google Scholar
  140. van Dijk, M. A. M, Paradis, E., Catzeflis, F., and de Jong, W. W. (1999). The virtues of gaps: Xenarthran (edentate) monophyly supported by a unique deletion in A-crystallin. Syst. Biol. 48: 94–106.Google Scholar
  141. Webb, S. D., and Taylor, B. E. (1980). The phylogeny of hornless ruminants and a description of the cranium of Archaeomeryx. Bull. Amer. Mus. Nat. Hist. 167: 121–157.Google Scholar
  142. Werdelin, L., and Nilsonne, A. (1999). The evolution of the scrotum and testicular descent in mammals: A phylogenetic view. J. Theor. Biol. 196: 61–72.Google Scholar
  143. Wheeler, W. C. (1995). Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Syst. Biol. 44: 321–331.Google Scholar
  144. Wheeler, W. C. (1996). Optimization alignment: The end of multiple sequence alignment in phylogenetics? Cladistics 12: 1–9.Google Scholar
  145. Wheeler, W. C. (1999). Measuring topological congruence by extending character techniques Cladistics 15: 131–136.Google Scholar
  146. Wheeler, W. C. (2001). Homology and the optimization of DNA sequence data. Cladistics 17: S3-S11.Google Scholar
  147. Wheeler, W. C., Gladstein, D., and DeLaet, J. (2002). POY direct optimzation computer program, Versions test_5 through 3.0.5. Available at Scholar
  148. Wible, J. R., and Novacek, M. J. (1988). Cranial evidence for the monophyletic origin of bats. Amer. Mus. Novit. 2911: 1–19.Google Scholar
  149. Wible, J. R., Novacek, M. J., and Rougier, G. W. (in press). New data on the skull structure in the Mongolian Late Cretaceous eutherian mammal Zalambdalestes. Bull. Amer. Mus. Nat. Hist.Google Scholar
  150. Wible, J. R., and Rougier, G. W. (2000). Cranial anatomy of Kryptobataar dashzevegi (Mammlia, Multituberculata) and its bearing on the evolution of mammalian characters. Bull. Amer. Mus. Nat. Hist. 247: 1–124.Google Scholar
  151. Wible, J. R., Rougier, G. W., Novacek, M. J., and McKenna, M. C. (2001). Earliest eutherian ear region: A petrosal referred to Prokennalestes from the Early Cretaceous of Mongolia. Amer. Mus. Novit. 3322: 1–44.Google Scholar
  152. Williamson, T. E., and Lucas, S. G. (1992). Meniscotherium (Mammalia, “Condylarthra”) from the Paleocene–Eocene of western North America. New Mex. Mus. Nat. Hist. Bull. 1: 1–75.Google Scholar
  153. Wyss, A. D. (1987). Notes on Proteutheria, Insectivora, and Thomas Huxley's contribution to mammalian systematics. J. Mammal. 68: 135–138.Google Scholar
  154. Wyss, A. R., and J. J. Flynn. (1993). A phylogenetic analysis and definition of the Carnivora. In: Mammal Phylogeny, Vol. 2: Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 32–52, Springer-Verlag, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Robert J. Asher
    • 1
    • 2
  • Michael J. Novacek
    • 1
  • Jonathan H. Geisler
    • 2
  1. 1.Division of PaleontologyAmerican Museum of Natural HistoryNew YorkUSA
  2. 2.Institut für Systematische Zoologie, Museum für NaturkundeBerlinGermany

Personalised recommendations