Skip to main content
Log in

Complexity, Forced and/or Self-Organized Criticality, and Topological Phase Transitions in Space Plasmas

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The first definitive observation that provided convincing evidence indicating certain turbulent space plasma processes are in states of ‘complexity’ was the discovery of the apparent power-law probability distribution of solar flare intensities. Recent statistical studies of complexity in space plasmas came from the AE index, UVI auroral imagery, and in-situ measurements related to the dynamics of the plasma sheet in the Earth's magnetotail and the auroral zone.

In this review, we describe a theory of dynamical ‘complexity’ for space plasma systems far from equilibrium. We demonstrate that the sporadic and localized interactions of magnetic coherent structures are the origin of ‘complexity’ in space plasmas. Such interactions generate the anomalous diffusion, transport, acceleration, and evolution of the macroscopic states of the overall dynamical systems.

Several illustrative examples are considered. These include: the dynamical multi- and cross-scale interactions of the macro-and kinetic coherent structures in a sheared magnetic field geometry, the preferential acceleration of the bursty bulk flows in the plasma sheet, and the onset of ‘fluctuation induced nonlinear instabilities’ that can lead to magnetic reconfigurations. The technique of dynamical renormalization group is introduced and applied to the study of two-dimensional intermittent MHD fluctuations and an analogous modified forest-fire model exhibiting forced and/or self-organized criticality [FSOC] and other types of topological phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angelopoulos, V., Coroniti, F. V., Kennel, C. F., Kivelson, M. G., Walker, R. J., Russell, C. T., McPherron, R. L., Sanchez, E., Meng, C. I., Baumjohann, W., Reeves, G. D., Belian, R. D., Sato, N., Fris-Christensen, E., Sutcliffe, P. R., Yumoto, K. and Harris, T.: 1996, ‘Multi-point analysis of a BBF event on April 11, 1985’, J.Geophys.Res. 101, 4967.

    Article  ADS  Google Scholar 

  • Angelopoulos, V., Mukai, T. and Kokubun, S.: 1999, ‘Evidence for Intermittency in Earth's Plasma Sheet and Implications for Self-organized Criticality’, Physics of Plasmas 6, 4161.

    Article  ADS  Google Scholar 

  • Bak, P., Chen, K. and Tang, C.: 1990, ‘A Forest-fire Model and Some Thoughts on Turbulence’, Phys.Lett. A147, 297.

    ADS  Google Scholar 

  • Castaing, B., Gagne, Y. and Hopfinger, E.J.: 1990, ‘Velocity Probability Density Functions of High Reynolds Number Turbulence’, Physica D 46, 177.

    Article  MATH  ADS  Google Scholar 

  • Chang, T. and Stanley, H. E.: 1973, ‘Renormalization-group Verification of Crossover with Respect to Lattice Anisotropy Parameter’, Phys.Rev. B8, 1178.

    ADS  Google Scholar 

  • Chang, T., Hankey, A. and Stanley, H. E.: 1973a, ‘Double-power Scaling Functions Near Tricritical Points’, Phys.Rev. B7, 4263.

    ADS  Google Scholar 

  • Chang, T., Hankey, A. and Stanley, H. E.: 1973b, ‘Generalized Scaling Hypothesis in Multicomponent Systems. I. Classification of Critical Points by Order and Scaling at Tricritical Points’, Phys.Rev. B8, 346.

    ADS  Google Scholar 

  • Chang, T., Nicoll, J. F. and Young, J. E.: 1978, ‘A Closed-form Differential Renormalization-group Generator for Critical Dynamics’, Phys.Lett. 67A, 287.

    MathSciNet  ADS  Google Scholar 

  • Chang, T.: 1992, ‘Low-dimensional Behavior and Symmetry Breaking of Stochastic Systems near Criticality-Can these Effects be Observed in Space and in the Laboratory?’, IEEE Trans.on Plasma Science 20, 691.

    Article  ADS  Google Scholar 

  • Chang, T., Vvedensky, D. D. and Nicoll, J. F.: 1992, ‘Differential Renormalization-group Generators for Static and Dynamic Critical Phenomena’, Physics Reports 217, 279.

    Article  MathSciNet  ADS  Google Scholar 

  • Chang, T.: 1998a, ‘Sporadic, Localized Reconnections and Multiscale Intermittent Turbulence in the Magnetotail’, in J. L. Horwitz, D. L. Gallagher and W. K. Peterson (eds), Geospace Mass and Energy Flow, American Geophysical, Union, Washington, D. C., AGU Geophysical Monograph 104, p. 193.

    Google Scholar 

  • Chang, T.: 1998b, ‘Multiscale Intermittent Turbulence in the Magnetotail’, in Y. Kamide et al. (eds), Proc.4th Intern.Conf.on Substorms, Kluwer Academic Publishers, Dordrecht and Terra Scientific Publishing Company, Tokyo, p. 431.

    Google Scholar 

  • Chang, T.: 1998c, ‘Self-organized Criticality, Multi-fractal Spectra, and Intermittent Merging of Coherent Structures in the Magnetotail’, in J. Büchner et al. (eds), Astrophysics and Space Science, Kluwer Academic Publishers, Dordrecht, the Netherlands, v. 264, p. 303.

    Google Scholar 

  • Chang, T.: 1999, ‘Self-organized Criticality, Multi-fractal Spectra, Sporadic Localized Reconnections and Intermittent Turbulence in the Magnetotail’, Physics of Plasmas 6, 4137.

    Article  ADS  Google Scholar 

  • Chang, T.: 2001, ‘Colloid-like Behavior and Topological Phase Transitions in Space Plasmas: Intermittent Low Frequency Turbulence in the Auroral zone’, Physica Scripta T89, 80.

    Article  ADS  Google Scholar 

  • Chang, T.: 2002, ‘"Complexity” Induced Plasma Turbulence in Coronal Holes and the Solar Wind’, in Solar Wind 10(in press).

  • Chang, T. and Wu, C. C.: 2002, ‘“Complexity” and Anomalous Transport in Space Plasmas’, Physics of Plasmas 9, 3679.

    Article  ADS  Google Scholar 

  • Chang, T., Wu, C. C. and Angelopoulos, V.: 2002, ‘Preferential Acceleration of Coherent Magnetic Structures and Bursty Bulk Flows in Earth's Magnetotail’, Physica Scripta T98, 48.

    Article  ADS  Google Scholar 

  • Chapman, S. C., Watkins, N.W., Dendy, R. G., Helander, P. and Rowlands, G.: 1998, ‘A Simple Avalanche Model as an Analogue for Magnetospheric Activity’, Geophys.Res.Lett. 25, 2397.

    Article  ADS  Google Scholar 

  • Consolini, G.: 1997, ‘Sandpile Cellular Automata and Magnetospheric Dynamics’, in S. Aiello, N. Lucci, G. Sironi, A. Treves and U. Villante (eds), Cosmic Physics in the Year 2000, Soc. Ital. di Fis., Bologna, Italy, pp. 123-126.

    Google Scholar 

  • Consolini, G. and Chang, T.: 2001, ‘Magnetic Field Topology and Criticality in Geotail Dynamics: Relevance to Substorm Phenomena’, Space Sci.Rev. 95, 309.

    Article  ADS  Google Scholar 

  • Consolini, G.: 2002, ‘Self-organized Criticality: A New Paradigm for the Magnetotail Dynamics’, Fractals 10, 275.

    Google Scholar 

  • Drossel, B. and Schwabl, F.: 1992, ‘Self-organized Critical Forest-fire Model’, Phys.Rev.Lett. 69, 1629.

    Article  ADS  Google Scholar 

  • Fairfield, D. H., Mukai, T., Brittnacher, M., Reeves, G. D., Kokubun, S., Parks, G. K., Nagai, T., Matsumoto, H., Hashimoto, K., Gurnett, D. A. and Yamamoto, T.: 1999, ‘Earthward Flow Bursts in the Inner Magnetotail and Their Relation to Auroral Brightenings, AKR Intensifications, Geosynchronous Particle Injections and Magnetic Activity’, J.Geophys.Res. 104, 355-370.

    Article  ADS  Google Scholar 

  • Farge, M., Holschneider, M. and Colonna, J. F.: 1990, ‘Wavelet Analysis of Coherent Two Dimensional Turbulent Flows’, in H. K. Moffat (ed.), Topological Fluid Mechanics, Cambridge University Press, Cambridge, p. 765.

    Google Scholar 

  • Germany, G. A., Parks, G. K., Ranganath, H., Elsen, R., Richards, P. G., Swift, W., Spann, J. F. and Brittnacher, M.: 1998, ‘Analysis of Auroral Morphology: Substorm Precursor and Onset on January 10, 1997’, Geophys.Res.Lett. 25, 3043-3046.

    Article  ADS  Google Scholar 

  • Gil, L. and Sornette, D.: 1996, ‘Laudau-Ginzburg Theory of Self-organized Criticality’, Phys.Rev.Lett. 76, 3991.

    Article  ADS  Google Scholar 

  • Ieda, A., Fairfield, D. H., Mukai, T., Saito, Y., Kokubun, S., Liou, K., Meng, C.-I., Parks, G. K. and Brittnacher, M. J.: 2001, ‘Plasmoid Ejection and Auroral Brightenings’, J.Geophys.Res. 106, 3845-3857.

    Article  ADS  Google Scholar 

  • Loreto, V., Pietronero, L., Vespignani, A. and Zapperi, S.: 1995, ‘Renormalization Group Approach to the Critical Behavior of the Forest-fire Model’, Phys.Rev.Lett. 75, 465.

    Article  ADS  Google Scholar 

  • Lu, E. T.: 1995, ‘Avalanches in Continuum Driven Dissipative Systems’, Phys.Rev.Lett. 74, 2511-2514.

    Article  ADS  Google Scholar 

  • Lui, A. T. Y.: 1996, ‘Current Disruptions in the Earth's Magnetosphere: Observations and Models’, J.Geophys.Res. 101, 4899.

    Article  ADS  Google Scholar 

  • Lui, A. T. Y.: 1998, ‘Plasma Sheet Behavior Associated with Auroral Breakups’, in Y. Kamide (ed.), Proc.4th Intern.Conf.on Substorms, Kluwer Academic Publishers, Dordrecht and Terra Scientific Publishing Company, Tokyo, p. 183.

    Google Scholar 

  • Lui, A. T. Y., Chapman, S. C., Liou, K., Newell, P. T., Meng, C. I., Brittnacher, M. and Parks, G. D.: 2000, ‘Is the Dynamic Magnetosphere an Avalanching System?’, Geophys.Res.Lett. 27, 911-914.

    Article  ADS  Google Scholar 

  • Lyons, L. R., Nagai, T., Blanchard, G. T., Samson, J. C. Yamamoto, T., Mukai, T., Nishida, A. and Kokubun, S.: 1999, ‘Association Between Geotail Plasma Flows and Auroral Poleward Boundary Intensifications Observed by CANOPUS Photometers’, J.Geophys.Res. 104, 4485-4500.

    Article  ADS  Google Scholar 

  • Matthaeus, W. H. and Goldstein, M. L.: 1986, ‘Low-frequency 1/f Noise in the Interplanetary Magnetic Field’, Phys.Rev.Lett. 57, 495.

    Article  ADS  Google Scholar 

  • Nagai, T., Fujimoto, M., Saito, Y., Machida, S. et al.: 1998, ‘Structure and Dynamics of Magnetic Reconnection for Substorm Onsets with Geotail Observations’, J.Geophys.Res. 103, 4419.

    Article  ADS  Google Scholar 

  • Nakamura, R., Baumjohann, W., Brittnacher, M., Sergeev, V. A., Kubyshkina, M., Mukai, T. and Liou, K.: 2001a, ‘Flow Bursts and Auroral Activations: Onset Timing and Foot Point Location’, J.Geophys.Res. 106, 10777-10789.

    Article  ADS  Google Scholar 

  • Nakamura, R., Baumjohann, W., Schodel, R., Brittnacher, M., Sergeev, V. A., Kubyshkina, M., Mukai, T. and Liou, K.: 2001b, ‘Earthward Flow Bursts, Auroral Streamers, and Small Expansions’, J.Geophys.Res. 106, 10791-10802.

    Article  ADS  Google Scholar 

  • Newell, P. T., Liou, K., Sotirelis, T. and Meng, C. I.: 2001, ‘Polar Ultraviolet Imager Observations of Global Auroral Power as a Function of Polar Cap Size and Magnetotail Stretching’, J.Geophys.Res. 106, 5895-5905.

    Article  ADS  Google Scholar 

  • Nicoll, J. F., Chang, T. and Stanley, H. E.: 1974, ‘Nonlinear Solutions of Renormalization-group Equations’, Phys.Rev.Lett. 32, 1446.

    Article  MathSciNet  ADS  Google Scholar 

  • Nicoll, J. F., Chang, T. and Stanley, H. E.: 1976, ‘Nonlinear Crossover Between Critical and Tricritical Behavior’, Phys.Rev.Lett. 36, 113.

    Article  ADS  Google Scholar 

  • Sergeev, V. A., Liou, K., Meng, C. I., Newell, P. T., Brittnacher, M., Parks, G. and Reeves, G. D.: 1999, ‘Development of Auroral Streamers in Association with Localized Impulsive Injections to the Inner Magnetotail’, Geophys.Res.Lett. 26, 417-420.

    Article  ADS  Google Scholar 

  • Tam, S. W. Y., Chang, T., Consolini, G. and de Michelis, P.: 2000, ‘Renormalization-group Description and Comparison with Simulation Results for Forest-fire Models-Possible Near-criticality Phenomenon in the Dynamics of Space Plasmas’, Trans. Amer. Geophys. Union, EOS 81, SM62A-04.

  • Uritsky, V. M., Klimas, A. J., Vassiliadis, D., Chua, D. and Parks, G. D.: 2002, ‘Scale-free Statistics of Spatiotemporal Auroral Emissions as Depicted by POLAR UVI Images: The Dynamic Magnetosphere is an Avalanching System’, J.Geophys.Res. (in press).

  • Wu, C. C. and Chang, T.: 2000a, ‘2D MHD Simulation of the Emergence and Merging of Coherent Structures’, Geophys.Res.Lett. 27, 863.

    Article  ADS  Google Scholar 

  • Wu, C. C. and Chang, T.: 2000b, ‘Dynamical Evolution of Coherent Structures in Intermittent Two-dimensional MHD Turbulence’, IEEE Trans.on Plasma Science 28, 1938.

    Article  Google Scholar 

  • Wu, C. C. and Chang, T.: 2001, ‘Further Study of the Dynamics of Two-dimensional MHD Coherent Structures-A Large Scale Simulation’, J.Atmos.Sci.Terrest.Phys. 63, 1447.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, T., Tam, S.W., Wu, CC. et al. Complexity, Forced and/or Self-Organized Criticality, and Topological Phase Transitions in Space Plasmas. Space Science Reviews 107, 425–445 (2003). https://doi.org/10.1023/A:1025502023494

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025502023494

Navigation