Skip to main content
Log in

Elevated atmospheric CO2 alters leaf litter quality for stream ecosystems: an in situ leaf decomposition study

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Trembling aspen (Populus tremuloides) seedlings were exposed to both elevated (720 ppm; ELEV) and ambient (370 ppm; AMB) concentrations of atmospheric CO2 for a 6-month growing season after which senesced leaves were collected and analyzed for differences in chemical composition. Elevated levels of atmospheric CO2 significantly increased total phenolic compounds, lignin levels, and C:N ratios, while decreasing the concentration of foliar nitrogen. ELEV and AMB leaf aggregates were placed into a headwater stream in the autumn of 1999 for 4 months to assess microbial activity, macroinvertebrate colonization, and leaf decomposition rates. Elevated CO2 significantly reduced 30 day microbial community respiration (−36.8%), and percent leaf mass remaining after 30 and 120 days of stream incubation (−9.4% and −13%, respectively). Low resolution of the experimental design for testing macroinvertebrate responses to altered leaves, including the free movement of macroinvertebrates among leaf aggregates, may explain the lack of treatment effect on invertebrate distribution between AMB and ELEV leaves. Elevated CO2-induced increases in leaf litter total phenolic compounds, lignins, and C:N appear to have negative effects on leaf decomposition, especially in the early stages of the decay process where microorganisms play a dominant role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J. A., N. C. Tuchman & P. A. Moore, 2003. Effects of elevated atmospheric CO2-altered leaf detritus on foraging decisions of the crayfish Orconectes virilis. J. N. Am. Benthol. Soc. (In review).

  • Bezemer, T. M. & T. H. Jones, 1998. Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82: 212-222.

    Google Scholar 

  • Boerner, R. E. J. & J. Rebbeck, 1993. Decomposition of hardwood leaves grown under elevated O3and/or CO2. Bull. Ecol. Soc. Am. (Suppl.) 74: 166.

    Google Scholar 

  • Boerner, R. E. J. & J. Rebbeck, 1995. Decomposition and nitrogen release from leaves of three hardwood species grown under elevated O3 and/or CO2. Plant Soil 170: 149-157.

    Google Scholar 

  • Canhoto, C. & M. A. S. Graca, 1999. Leaf barriers to fungal colonization and shredders (Tipula lateralis) consumption of decomposing Eucalyptus globulus. Microbial. Ecol. 37: 163-172.

    Google Scholar 

  • Cotrufo, M. F., P. Ineson & A. P. Rowland, 1994. Decomposition of tree leaf litters grown under elevated CO2: effect of litter quality. Plant Soil 163: 121-130.

    Google Scholar 

  • Cotrufo, M. F. & P. Ineson, 1996. Elevated CO2 reduces field decomposition rates of Betula pendula (Roth.) leaf litter. Oecologia 106: 525-530.

    Google Scholar 

  • Cotrufo, M. F., M. J. I. Briones & P. Ineson, 1998. Elevated CO2 affects field decomposition rate and palatability of tree leaf litter: importance of changes in substrate quality. Soil Biol. Biochem. 30: 1565-1571.

    Google Scholar 

  • Couteaux, M. M., M. Mousseau, M. L. Celerier & P. Bottner, 1991. Increased atmospheric CO2 and litter quality: decomposition of sweet chestnut leaf litter with animal food webs of different complexities. Oikos 61: 54-64.

    Google Scholar 

  • Couteaux, M. M., C. Kurz, P. Bottner & A. Raschi, 1999. Influence of increased atmospheric CO2 concentration on quality of plant material and litter decomposition. Tree Phys. 19: 301-311.

    Google Scholar 

  • Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Ann. Rev. Ecol. Syst. 10: 147-172.

    Google Scholar 

  • Curtis, P. S. & J. A. Teeri, 1992. Seasonal responses of leaf gas exchange to elevated carbon dioxide in Populus grandidentata. Can. J. For. Res. 22: 1320-1325.

    Google Scholar 

  • Curtis, P. S., D. R. Zak, K. S. Pregitzer, J. Lussenhop & J. A. Teeri, 1996. Linking above-ground and below-ground responses to rising CO2 in northern deciduous forest species. In Koch, G. W. & H. A. Mooney (eds), Carbon Dioxide and Terrestrial Ecosystems. Academic Press, San Diego: 41-51.

    Google Scholar 

  • Dean, J. F. D., 1997. Lignin analysis. In Daushek, W. V. (ed.), Methods in Plant Biochemistry and Molecular Biology. CRC Press, Boca Raton.

    Google Scholar 

  • Frederiksen, H. B., R. Ronn & S. Christensen, 2001. Effect of elevated atmospheric CO2 and vegetation type on microbiota associated with decomposing straw. Global Change Biol. 7: 313-321.

    Google Scholar 

  • Gessner, M. O. & E. Chauvet, 1994. Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75:1807-1817.

    Google Scholar 

  • Irons, J. G., III, M. W. Oswood & J. P. Bryant, 1998. Consumption of leaf detritus by a stream shredder: influence of tree species and nutrient status. Hydrobiologia 160: 53-61.

    Google Scholar 

  • Lambers, H., 1993. Rising CO2, secondary plant metabolism, plant-herbivore interactions and litter decomposition. Vegetatio 104/105: 263-271.

    Google Scholar 

  • Lindroth, R. L., 1996a. Consequences of elevated atmospheric CO2 for forest insects. In Korner, C. & F. A. Bazzaz (eds), Carbon Dioxide, Populations, and Communities. Academic Press, San Diego, Calif: 347-361.

    Google Scholar 

  • Lindroth, R. L., 1996b. CO2-mediated changes in tree chemistry and tree-Lepidoptera interactions. In Koch, G. W. & H. A. Mooney (eds), Carbon Dioxide and Terrestrial Ecosystems. Academic Press, San Diego, Calif: 105-120.

    Google Scholar 

  • Lindroth, R. L. & K. K. Kinney, 1998. Consequences of enriched atmospheric CO2 and defoliation for foliar chemistry and Gypsy moth performance. J. Chem. Ecol. 24: 1677-1695.

    Google Scholar 

  • Mellilo, J. M., J. D. Aber & J. F. Muratore, 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 6: 3621-626.

    Google Scholar 

  • Minshall, G. W., 1967. Role of allochthonous detritus in the trophic structure of a woodland springbrook community. Ecology 48: 139-149.

    Google Scholar 

  • Nicolai, V., 1988. Phenolic and mineral content of leaves influences decomposition in European forest ecosystems. Oecologia 75: 575-579.

    Google Scholar 

  • Norby, R. J. & M. F. Cotrufo, 1998. A question of litter quality. Nature 396: 17-18.

    Google Scholar 

  • Norby, R. J., M. F. Cotrufo, P. Ineson, E. G. O'Neill & J. G. Canadell, 2001. Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127: 153-165.

    Google Scholar 

  • Ostrofsky, M. L., 1993. Effect of tannins on leaf processing and conditioning rates in aquatic ecosystems: an empirical approach. Can. J. Fish. Aquat. Sci. 50: 1176-1180.

    Google Scholar 

  • Ostrofsky, M. L., 1997. Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates. J. N. Am. Benthol. Soc. 16: 750-759.

    Google Scholar 

  • Otto, C., 1976. Factors affecting the drift of Potamophylax cingulatus (Trichoptera) larvae. Oikos 27: 292-301.

    Google Scholar 

  • Petersen, R. C. & K. W. Cummins, 1974. Leaf processing in a woodland stream. Freshwat. Biol. 4: 343-368.

    Google Scholar 

  • Rier, S. T., N. C. Tuchman, R. G. Wetzel & J. A. Teeri, 2002. Elevated CO2-induced changes in the chemistry of quaking aspen (Populus tremuloides Michaux) leaf litter: Subsequent mass loss and microbial response in a stream ecosystem. J. N. Am. Benthol. Soc. 21: 16-27.

    Google Scholar 

  • Roth, S., E. P. McDonald & R. L. Lindroth, 1997. Atmospheric CO2 and soil water availability: consequences for tree-insect interactions. Can. J. For. Res. 27: 1281-1290.

    Google Scholar 

  • Schmidt, T. L., J. S. Spencer & R. Bertsch, 1993. Michigan's forests 1993: an analysis. U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station. Resource Bulletin NC-179.

  • Stout, J., 1989. Effects of condensed tannins on leaf processing in mid-latitude and tropical streams: a theoretical approach. Can. J. Fish. Aquat. Sci. 46: 1097-1106.

    Google Scholar 

  • Strain, B. R. & F. A. Bazzaz, 1983. Terrestrial plant communities. In Lemon, E. R. (ed.), CO2 and Plants (AAAS selected symposium 84). Westview, Boulder: 177-222.

    Google Scholar 

  • Suberkropp, K., G. L. Godshalk & M. J. Klug, 1976. Changes in the chemical composition of leaves during processing in a woodland stream. Ecology 57: 720-727.

    Google Scholar 

  • Swain, T. & J. L. Goldstein, 1964. The Quanititative Analysis of Phenolic Compounds. In Pridham, J. B. (ed.), Methods in Polyphenol Compounds. Pergamon Press, Oxford: 131-145.

    Google Scholar 

  • Taylor, B. R., D. Parkinson & W. F. J. Parsons, 1989. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70: 97-104.

    Google Scholar 

  • Tuchman, N. C., R. G. Wetzel, S. T. Rier, K. A. Wahtera & J. A. Teeri, 2002. Elevated atmospheric CO2 lowers leaf litter nutritional quality for stream ecosystem food webs. Global Change Biol. 8: 163-170.

    Google Scholar 

  • Tuchman, N. C., K. A. Wahtera, R. G. Wetzel, N. M. Russo, G. M. Kilbane, L. M. Sasso & J. A. Teeri, 2003. Nutritional quality of leaf detritus altered by elevated atmospheric CO2: Effects on development of mosquito larvae. Freshwat. Biol. (accepted).

  • Walton, O. E. Jr., S. R. Reice & R.W. Andrews, 1997. The effects of density, sediment particle size and velocity on drift of Acroneuria abnormis (Plecoptera). Oikos 28: 291-298.

    Google Scholar 

  • Watson, R. T., L. G. Miera Filho, E. Sanjueza & A. Janetos, 1992. In Houghton, J. T., B. A. Callander & S. K. Varnery (eds), Climate Change. Cambridge Univ. Press, Cambridge: 25-46.

    Google Scholar 

  • Wetzel, R. G. & J. B. Grace, 1983. Atmospheric CO2 enrichment effects on aquatic plants. In Lemon, E. H. (ed.), The Response of Plants to Rising Levels of Atmospheric Carbon Dioxide. Amer. Assoc. Advanc. Sci., Washington, D.C: 223-280.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses, 3rd Ed. Springer-Verlag, New York: 325-336.

    Google Scholar 

  • Wetzel, R. G. & N. C. Tuchman, 2003. Effects of CO2 enrichment on the production of humic degradation products, their natural photodegradation, and biological utilization. Limnol. Oceanogr. (Submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuchman, N.C., Wahtera, K.A., Wetzel, R.G. et al. Elevated atmospheric CO2 alters leaf litter quality for stream ecosystems: an in situ leaf decomposition study. Hydrobiologia 495, 203–211 (2003). https://doi.org/10.1023/A:1025493018012

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025493018012

Navigation