Skip to main content
Log in

A Cyclic Induction Accelerator

  • Published:
Russian Physics Journal Aims and scope

Abstract

The main feature of the examined cyclic induction accelerator is the separation of control and accelerating electromagnetic fluxes. The control magnetic field is formed by analogy with the magnetic field of a weakly focusing synchrotron, and the accelerating vortex electric field is generated by electromagnetic cores – inductors. Such a design of the cyclic induction accelerator allows the active steel volume and the power of a supply unit to be reduced significantly, and the separation of control and accelerating magnetic fluxes allows the energy lost by particles by synchrotron emission to be compensated using a relatively simple method. Recent investigations have demonstrated that in this accelerator, electrons can be accelerated to energies exceeding 300 MeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. A. Moskalev, Betatrons [in Russian], Energoatomizdat, Moscow (1981).

    Google Scholar 

  2. D. Kerst et al., Phys. Rev., 78, 297–303 (1950).

    Google Scholar 

  3. C. A. Kapetanakos, L. K. Len, T. Smith, et al., Phys. Fluids, 3, No. 8, 2396–2402 (1991).

    Google Scholar 

  4. C. A. Kapetanakos, D. Dialetis, S. J. Marsh, et al., Phys. Rev., 44, No. 6, 3900–3907 (1991).

    Google Scholar 

  5. D. L. Ivanenko and I. I. Pomeranchuk, Dokl. Akad. Nauk SSSR, 44, 343–348 (1944).

    Google Scholar 

  6. M. S. Khvastunov, Prib. Tekh. Eksp., No. 3, 20–23 (1981).

    Google Scholar 

  7. V. N. Kanynnikov, P. S. Mikhalev, N. F. Simukhin, et al., in: Proc. of the 6th All-Union Conf. on Accelerators of Charged Particles, Vol. 2 [in Russian], Dubna (1979), p. 319.

    Google Scholar 

  8. L. M. Anan'ev, A. A. Vorob'ev, and V. I. Gorbunov, An Induction Electron Accelerator [in Russian], Atomizdat, Moscow (1961).

    Google Scholar 

  9. M. F. Filippov, Handbook on the Calculation of a Betatron Electromagnet [in Russian], Publishing House of Tomsk State University, Tomsk (1967).

    Google Scholar 

  10. A. Azimov, R. D. Babadzhanov, V. A. Moskalev, et al., Prikl. Yad. Spektrosk., No. 8 (1979).

  11. É. G. Furman, A betatron with Magnetization [in Russian], Publishing House of Tomsk Polytechnic University, Tomsk (2000).

    Google Scholar 

  12. V. A. Kas'yanov, M. V. Rychkov, A. A. Filimonov, et al., in: Collection of Reports at the 10th Int. Conf. on the Application of Particle Accelerators to Industry and Medicine [in Russian], Moscow (2001), pp. 113–116.

  13. V. P. Sarantsev and Z. A. Perel'shtein, Collective Acceleration of Ions in Electron Rings [in Russian], Atomizdat, Moscow (1979). 277

    Google Scholar 

  14. J. Livingood, Principles of Cyclic Particle Accelerators [Russian translation], Inostrannaya Literatura, Moscow (1963).

    Google Scholar 

  15. A. A. Vorob'ev, B. A. Kononov, and V. V. Evstigneev, Electron Beams of Betatrons [in Russian], Atomizdat, Moscow (1974).

    Google Scholar 

  16. V. A. Moskalev and V. G. Shestakov, in: Trudy Nauchn, Issled. Inst. Yad. Fiz., No. 1, 5 (1971).

    Google Scholar 

  17. 17. V. G. Shestakov, Candidate's Dissertation in Technical Sciences, Tomsk (1969).

  18. 18. V. A. Moskalev, Patent of the Russian Federation No. 2153783, Bull. No. 21 (2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moskalev, V.A., Sergeev, G.I. A Cyclic Induction Accelerator. Russian Physics Journal 46, 270–277 (2003). https://doi.org/10.1023/A:1025485711315

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025485711315

Keywords

Navigation