Skip to main content
Log in

Distribution of mycorrhizal fungal spores in soils under agroforestry and monocultural coffee systems in Brazil

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Deep-rooting trees in agroforestry systems may promote distribution of spores of arbuscular mycorrhizal fungi (AMF) at deeper soil levels. We investigated the vertical distribution of AMF spores in Oxisols under agroforestry and monocultural (unshaded) coffee systems in on-farm experiments (Brazil). The number of AMF spores was considered as an indicator of mycorrhiza incidence in soil. Spores were extracted from 0–1, 2–3, 5–7.5, 10–15, 20–30, 40–60 cm soil-depths in agroforestry and monocultural coffee systems, of three different age groups (young, medium-aged and old), using centrifugation methods, and counted. Fine roots were collected and dry-weighed from 0–30 cm in young and old systems and from several depths in medium-aged systems. Soils were characterised with respect to texture, pH, organic matter, calcium, magnesium, phosphorus and potassium. Agroforestry had a higher percentage of spores (12–21% of the total number of spores) and roots (on average 1.5 g L−1 soil) in deeper layers (20–60 cm), and a lower percentage (79–88%) closer to the surface (0–15 cm) than the monocultural fields (respectively 3–12%, 0.6 g L−1 soil and 88–97%). Greater numbers of spores in the deeper soil layers may be explained by greater amounts of roots and may be an indicator of greater incidence of mycorrhiza in agroforestry than in monocultural coffee systems. Greater mycorrhizal incidence at deeper soil layers in the agroforestry system may change the dynamics of phosphorus cycling in soil, making this nutrient more available to plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brundrett M. 1991. Mycorrhizas in natural ecosystems. Adv Ecol Res 21: 171–313.

    Google Scholar 

  • Brundrett M., Bougher N., Dell B., Grove T. and Malajczuk N. 1996. Working with Mycorrhizas in Forestry and Agriculture. Centre for International Agricultural Research, Canberra, Australia, 374 pp.

    Google Scholar 

  • Cardoso I.M., Guijt I., Franco F.S., Carvalho A.F. and Ferreira Neto P.S. 2001a. Continual learning for agroforestry system design: University, NGO and farmer partnership in Minas Gerais, Brazil. Agric Syst 69: 235–257.

    Google Scholar 

  • Cardoso I.M., Janssen B.H., Oenema O. and Kuyper T.W. 2001b. Phosphorus fractionation in Oxisols under agroforestry and conventional coffee systems in Brazil. In: Horst W.J., Schenk M.K., Bürkert A., Claassen N., Flessa H., Frommer W.B. et al. (eds), Proceedings of the XIV International Plant Nutrition Colloquium. Hannover, Germany. Kluwer Dordrecht, The Netherlands, pp. 1018–1019.

    Google Scholar 

  • Cardoso I.M., van der Meer P., Janssen B.H., Oenema O. and Kuyper T.W. 2003. Analysis of phosphorus by 31PNMR in Oxisols under agroforestry and conventional coffee systems in Brazil. Geoderma 112: 51–70.

    Google Scholar 

  • CFSEMG 1989. Recomendação para o uso de corretivos e fertilizantes em Minas Gerais, 4a aproximação. Lavras, BR, 176 pp.

  • Cooper P.J.M., Leakey R.R.B., Rao M.R. and Reynolds L. 1996. Agroforestry and the mitigation of land degradation in the humid and sub-humid tropics of Africa. Exp Agric 32: 235–290.

    Google Scholar 

  • Daft M.J. and Nicolson T.H. 1972. Effect of Endogone mycorrhiza on plant growth. IV. Quantitative relationships between the growth of the host and the development of the endophyte in tomato and maize. New Phytol 71: 287–295.

    Google Scholar 

  • Fischer C.R., Janos D.P., Perry D.A. and Linderman R.G. 1994. Mycorrhiza inoculum potentials in tropical secondary succession. Biotropica 26: 369–377.

    Google Scholar 

  • Giovannetti M., Schubert A., Cravero M.C. and Salutini L. 1988. Spore production by the vesicular-arbuscular mycorrhizal fun-gus Glomus monosporum as related to host species, root colonisation and plant growth enhancement. Biol Fertil Soils 6: 120–124.

    Google Scholar 

  • Guadarrama P. and Álvarez-Sánches F.J. 1999. Abundance of arbuscular mycorrhizal fungi spores in different environments in a tropical rain forest, Vera Cruz, Mexico. Mycorrhiza 8: 267–270.

    Google Scholar 

  • Hairston N.G. 1989. Ecological Experiments. Purpose, Design and Execution. Cambridge University Press, Cambridge, UK, 370 pp.

    Google Scholar 

  • Hetrick B.A.D. 1984. Ecology of VA Mycorrhizal fungi. In: Powell C. and Bagyaraj D. (eds), VA Mycorrhiza. CRC Press, Boca Raton, Florida, USA, pp. 35–55.

    Google Scholar 

  • Hetrick B.A.D. and Bloom J. 1986. The influence of host plants on production and colonization ability of vesicular-arbuscular mycorrhizal spores. Mycologia 78: 32–36.

    Google Scholar 

  • Huxley P.A. and Mead R. 1988. An Ecological Approach to On-farm Experimentation. ICRAF, Nairobi, Kenya, Working paper no 52, 34 pp.

    Google Scholar 

  • Janos D.P. 1996. Mycorrhizas, succession and rehabilitation of deforested lands in the humid tropics. In: Frankland J.C., Magan N. and Gadd G.M. (eds), Fungi and Environmental Change. Cambridge University Press, Cambridge, UK, pp. 129–161.

    Google Scholar 

  • Kabir Z., O'Halloran I.P., Widden P. and Hamel C. 1998. Vertical distribution of arbuscular mycorrhizal fungi under corn (Zea mays L.) in no-till and conventional tillage systems. Mycorrhiza 8: 53–55.

    Google Scholar 

  • Lambais M.R. 1996. Aspectos bioquímicos e moleculares da relação fungo-planta em micorrizas arbusculares. In: Siqueira J.O. (ed.), Avanços em fundamentos e aplicação de micorrizas. UFLA-DCS e DCF, Lavras, BR, pp. 5–38.

    Google Scholar 

  • McGee P.A., Pattinson G.S., Heath R.A., Newman C.A. and Allen S.J. 1997. Survival of propagules of arbuscular mycorrhizal fungi in soils in eastern Australia used to grow cotton. New Phytol 135: 773–780.

    Google Scholar 

  • Novais R.F. and Smyth T. 1999. Fósforo em solo e planta em condições tropicais. UFV/DPS, Viçosa, BR, 399 pp.

    Google Scholar 

  • Onguene N.A. 2000. Diversity and Dynamics of Mycorrhizal Associations in Tropical Rain Forests with Different Disturbance Regimes in South Cameroon. PhD Dissertation, Wageningen University and Research Center, Wageningen, NL, 167 pp.

    Google Scholar 

  • Onguene N.A. and Kuyper T.W. 2001. Mycorrhizal associations in the rain forest of south Cameroon. For Ecol Manag 140: 277–287.

    Google Scholar 

  • Saggin-Júnior O. and Siqueira J.O. 1996. Micorrizas arbusculares em cafeeiro. In: Siqueira J.O. (ed.), Avanços em fundamentos e aplicação de micorrizas. UFLA-DCS e DCF, Lavras, Brasil, pp. 203–254.

    Google Scholar 

  • Sanchez P.A. 1995. Science in agroforestry. Agrofor Syst 30: 5–55.

    Google Scholar 

  • Siqueira J.O. and Saggin-Júnior O. 2001. Dependency on arbuscular mycorrhizal fungi and responsiveness of some Brazilian native woody species. Mycorrhiza 11: 245–255.

    Google Scholar 

  • Young A. 1997. Agroforestry for Soil Management. 2nd edn. ICRAF and CAB International, Wallingford, UK, 320 pp.

    Google Scholar 

  • Zajicek J.M., Hetrick B.A.D. and Owensby C.E. 1986. The influence of soil depth on mycorrhizal colonisation of forbs in the tallgrass prairie. Mycologia 78: 316–320.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene M. Cardoso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardoso, I.M., Boddington, C., Janssen, B.H. et al. Distribution of mycorrhizal fungal spores in soils under agroforestry and monocultural coffee systems in Brazil. Agroforestry Systems 58, 33–43 (2003). https://doi.org/10.1023/A:1025479017393

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025479017393

Navigation