Skip to main content
Log in

Anoxic degradation of biogenic debris in sediments of eutrophic subalpine Lake Bled (Slovenia)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Anoxic degradation of sedimentary biogenic debris using closed sediment incubation experiments was studied in eutrophic subalpine Lake Bled (NW Slovenia) which, for most of the year, has an anoxic hypolimnion. Production rates of dissolved inorganic carbon (DIC), NH4 +, PO4 3- and dissolved Si, and reduction rates of SO4 2- were measured and anoxic mineralization rates were modelled using G-model. The depth profiles indicated major mineralization of biogenic debris and SO4 2- reduction near the sediment surface. A comparison between depth integrated anoxic mineralization rates and diffusive benthic fluxes of DIC, NH4 + and PO4 3- showed that the anoxic incubation experiments provide a good estimate of N degradation of biogenic debris. The contributions of SO4 2- reduction and acetate fermentation in NH4 + production are about 30 and 70%, respectively. The DIC production accounted for only 15% of DIC benthic flux, indicating that methanogenesis and oxidation of methane provides 80% of this flux. Only about 30% of PO4 3- was released because phosphate precipitated in the closed incubation experiments. The depth integrated production of Si accounts for 70–80% of Si benthic fluxes indicating intense dissolution of biogenic Si in the surficial lake sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aller, R. C. & J. Y. Yingst, 1980. Relationship between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of Long Island Sound. Mar. Biol. 56: 29-42.

    Google Scholar 

  • Berner, R. A., 1966. Chemical diagenesis of somemodern carbonate sediments. Am. J. Sci. 264: 1-36.

    Google Scholar 

  • Berner, R. A., 1980. Early Diagenesis. A Theoretical Approach. Princeton University Press, Princeton, New York.

    Google Scholar 

  • Burdige, D. J., 1991. The kinetics of organic matter mineralization in anoxic marine sediments. J. mar. Res. 49: 727-761.

    Google Scholar 

  • Cermelj, B., J. Faganeli, B. Ogorelec, T. Dolenec, J. Pezdic & B. Smodis, 1996. The origin and recycling of sedimented biogenic debris in a subalpine eutrophic lake (Lake Bled, Slovenia). Biogeochem. 32: 69-91.

    Google Scholar 

  • Furrer, G. & B. Wehrli, 1996. Microbial reactions, chemical speciation, and multicomponent diffusion in porewaters af a eutrophic lake. Geochim. Cosmochim. Acta 60: 2333-2346.

    Google Scholar 

  • Gachter, R. & B. Wehrli, 1990. Mechanisms controlling fluxes of nutrients across the sediment/water interface in a eutrophic lake. In Bands, R. & J. Giesy (eds), Fates and Effect of In-Place of Pollutants in Aquatic Ecosystems. Lewis Publ., Ann Arbor: 131- 162.

    Google Scholar 

  • Gieskes, J. M. & W. C. Rogers, 1973. Alkalinity determination in interstitial waters of marine sediments. J. Sediment Petrol. 43: 272-277.

    Google Scholar 

  • Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Methods in seawater analysis, Verlag Chemie, Weinheim.

    Google Scholar 

  • Krom., M. D. & R. A. Berner, 1980. Adsorption of phosphate in anoxic marine sediments. Limnol. Oceanogr. 25: 797-806.

    Google Scholar 

  • Lawson, S. D., D. C. Hurd & H. Stuart Pankratz, 1978. Silica dissolution rates of decomposing phytoplankton assemblages at various temperatures. Am. J. Sci. 278: 1373-1393.

    Google Scholar 

  • Lerman, A., 1979. Geochemical Processes: Water and Sediment Environments. John Wiley & Sons, New York.

    Google Scholar 

  • Li, Y. H. & S. Gregory, 1974. Diffusion of ions in sea water and deep-sea sediments. Geochim. Cosmochim. Acta 38: 703-714.

    Google Scholar 

  • Lojen, S., N. Ogrinc & T. Dolenec, 1999. Decomposition of sedimentary organic matter and methane formation in the recent sediment of Lake Bled (Slovenia). Chem. Geol. 159: 223-240.

    Google Scholar 

  • Mackin, J. E. & R. C. Aller, 1984. Ammonium adsorption in marine sediments. Limnol. Oceanogr. 29: 250-257.

    Google Scholar 

  • Meischner, D. & J. Rumohr, 1974. A light-weight high-momentum gravity corer for subaqueous sediments. Senckenb. Marit. 6: 105-117.

    Google Scholar 

  • Millero, F., 1995. Thermodynamics of the carbon dioxide system in the oceans. Geochim. Cosmochim. Acta 59: 661-677.

    Google Scholar 

  • Muri, G., B. Cermelj, J. Faganeli & J. Holc, 2002. Determination of black carbon in lacustrine and coastal marine sediments by thermal oxidation. Acta Chim. Slov. 49: 29-42.

    Google Scholar 

  • Ogrinc, N., S. Lojen & J. Faganeli, 1997. The sources of dissolved inorganic carbon in pore waters of lacustrine sediment. Water Air Soil Pollut. 99: 333-341.

    Google Scholar 

  • Tabatabai, M. A., 1974. A rapid method for determination of sulfate in water samples. Environ. Lett. 7: 237-243.

    Google Scholar 

  • Van Cappellen, P. & R. A. Berner, 1988. A mathematical model for the early diagenesis of phosphorus and fluorine in marine sediments: apatite precipitation. Am. J. Sci. 288: 289-333.

    Google Scholar 

  • Westrich, J. T. & R. A. Berner, 1984. The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested. Limnol. Oceanogr. 29: 236-249.

    Google Scholar 

  • Wollast, R., 1974. The silica problem. In Golberg, E. D. (ed.), The Sea. Vol. 5, Wiley-Interscience, New York: 359-392.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cermelj, B., Faganeli, J. Anoxic degradation of biogenic debris in sediments of eutrophic subalpine Lake Bled (Slovenia). Hydrobiologia 494, 193–199 (2003). https://doi.org/10.1023/A:1025466315886

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025466315886

Navigation