Skip to main content
Log in

Cardiac adaptation to endurance exercise in rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Endurance exercise is widely assumed to improve cardiac function in humans. This project has determined cardiac function following endurance exercise for 6 (n = 30) or 12 (n = 25) weeks in male Wistar rats (8 weeks old). The exercise protocol was 30 min/day at 0.8 km/h for 5 days/week with an endurance test on the 6th day by running at 1.2 km/h until exhaustion. Exercise endurance increased by 318% after 6 weeks and 609% after 12 weeks. Heart weight/kg body weight increased by 10.2% after 6 weeks and 24.1% after 12 weeks. Echocardiography after 12 weeks showed increases in left ventricular internal diameter in diastole (6.39 ± 0.32 to 7.90 ± 0.17 mm), systolic volume (49 ± 7 to 83 ± 11 μl) and cardiac output (75 ± 3 to 107 ± 8 ml/min) but not left wall thickness in diastole (1.74 ± 0.07 to 1.80 ± 0.06 mm). Isolated Langendorff hearts from trained rats displayed decreased left ventricular myocardial stiffness (22 ± 1.1 to 19.1 ± 0.3) and reduced purine efflux during pacing-induced workload increases. 31P-NMR spectroscopy in isolated hearts from trained rats showed decreased PCr and PCr/ATP ratios with increased creatine, AMP and ADP concentrations. Thus, this endurance exercise protocol resulted in physiological hypertrophy while maintaining or improving cardiac function. (Mol Cell Biochem 251: 51–59, 2003)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fagard R: Athlete's heart: A meta-analysis of the echocardiographic experience. Int J Sports Med 17: S140-S144, 1996

    Article  PubMed  Google Scholar 

  2. Douglas P, O'Toole M, Katz S, Ginsburg G, Hiller D, Laird R: Left ventricular hypertrophy in athletes. Am J Cardiol 80: 1384-1388, 1997.

    Article  PubMed  CAS  Google Scholar 

  3. Thomas D, Zimmerman S, Hansen T, Martin D, McMormick R: Collagen gene expression in rat left ventricle: Interactive effect of age and exercise training. J Appl Physiol 89: 1462-1468, 2000.

    PubMed  CAS  Google Scholar 

  4. Moore R: Cellular adaptations of the heart muscle to exercise training. Ann Med 30(suppl 1): 46-53, 1998

    PubMed  Google Scholar 

  5. Brown L, Duce B, Miric G, Sernia C: Reversal of cardiac fibrosis in deoxycorticosterone acetate-salt hypertensive rats by inhibition of the renin-angiotensin system. J Am Soc Nephrol 10: S143-S148, 1999

    PubMed  CAS  Google Scholar 

  6. Brown L, Fenning A, Shek A, Burstow D: Reversal of cardiovascular remodelling with candesartan. J Renin-angiotensin-aldosterone Syst 2(suppl 1): S141-S147, 2001.

    CAS  Google Scholar 

  7. Doggrell S, Brown L: Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc Res 39: 89-105, 1998.

    Article  PubMed  CAS  Google Scholar 

  8. Aeschbacher B, Hutter D, Fuhrer J, Weidmann, P, Delacretaz E, Allemann Y: Diastolic dysfunction precedes myocardial hypertrophy in the development of hypertension. Am J Hyper 14: 106-113, 2001.

    Article  CAS  Google Scholar 

  9. Jin H, Yang R, Li W, Lu H, Ryan A, Ogasawara A, Peborgh J, Paoni N: Effects of exercise training on cardiac function, gene expression, and apoptosis in rats. Am J Physiol 279: H2994-H3002, 2000.

    CAS  Google Scholar 

  10. Woodiwiss AJ, Norton GR: Exercise-induced cardiac hypertrophy is associated with an increased myocardial compliance. J Appl Physiol 78: 1303-1311, 1995.

    Article  PubMed  CAS  Google Scholar 

  11. Woodiwiss A, Oosthuyse T, Norton G: Reduced cardiac stiffness following exercise is associated with preserved myocardial collagen characteristics in the rat. Eur J Appl Physiol 78: 148-154, 1998.

    Article  CAS  Google Scholar 

  12. Yamashita N, Hoshida S, Otsu K, Asahi M, Kuzuya T, Hori M: Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. J Exp Med 189: 1699-1706, 1999.

    Article  PubMed  CAS  Google Scholar 

  13. Lebine SN, Kinasewitz GT: Exercise conditioning increases rat myocardial calcium uptake. J Appl Physiol 60: 1673-1679, 1986

    Google Scholar 

  14. Kingwell BA: Nitric oxide as a metabolic regulator during exercise: Effects of training in health and disease. Clin Exp Pharmacol Physiol 27: 239-250, 2000

    Article  PubMed  CAS  Google Scholar 

  15. Stuewe SR, Gwirtz PA, Agrawal N, Mallet RT: Exercise training enhances glycolytic and oxidative enzymes in canine ventricular myocardium. J Mol Cell Cardiol 32: 903-913, 2000

    Article  PubMed  CAS  Google Scholar 

  16. Spencer RG, Buttrick PM, Ingwall JS: Function and bioenergetics in isolated perfused trained rat hearts. Am J Physiol 272: H409-H417, 1997

    PubMed  CAS  Google Scholar 

  17. Abete P, Calabrese C, Ferrara N, Cioppa A, Pisanelli P, Cacciatore F, Longobardi G, Napoli C, Rengo F: Exercise training restores ischemic preconditioning in the aging heart. J Am Coll Cardiol 36: 643-650, 2000

    Article  PubMed  CAS  Google Scholar 

  18. Claessens P, Claessens C, Claessens M, Claessens M, Claessens J: Supernormal left ventricular diastolic function in triathletes. Tex Heart Inst J 28: 102-110, 2001

    PubMed  CAS  Google Scholar 

  19. Dwyer D, Browning J: Endurance training in Wistar rats decreases receptor sensitivity to a serotonin agonist. Acta Physiol Scand 170: 211-216, 2000

    Article  PubMed  CAS  Google Scholar 

  20. Brown L, Fenning A, Chan V, Loch D, Wilson K, Anderson B, Burstow D: Echocardiographic assessment of cardiac structure and function in rats. Heart Lung Circ 11: 167-173, 2002

    Article  PubMed  Google Scholar 

  21. Litwin SE, Katz SE, Morgan JP, Douglas PS: Serial echocardiographic assessment of left ventricular geometry and function after large myocardial infarction in the rat. Circulation 89: 345-354, 1994

    PubMed  CAS  Google Scholar 

  22. Harrison GJ, Willis RJ, Headrick JP: Extracellular adenosine levels and cellular energy metabolism in ischemically preconditioned rat heart. Cardiovasc Res 40: 74-87, 1998.

    Article  PubMed  CAS  Google Scholar 

  23. Wisloff U, Helgerud J, Kemi OJ, Ellingsen O: Intensity-controlled treadmill running in rats: Vo2max and cardiac hypertrophy. Am J Physiol 280: H1301-H1310, 2001

    CAS  Google Scholar 

  24. Wisloff U, Loennechen JP, Falck G, Beisvag V, Currie S, Smith G, Ellingsen Ø: Increased contractility and calcium sensitivity in cardiac myocytes isolated from endurance trained rats. Cardiovasc Res 50: 495-508, 2001

    Article  PubMed  CAS  Google Scholar 

  25. Rodnick KJ, Reaven GM, Smaldone PG, Riedy M, Zelis R: Variations in running activity and enzymatic adaptations in voluntary running rats. J Apply Physiol 66: 1250-1257, 1989

    CAS  Google Scholar 

  26. Guazzi M, Brenner DA, Apstein CS, Saupe KW: Exercise intolerance in rats with hypertensive heart disease is associated with impaired diastolic relaxation. Hypertension 37: 204-208, 2001

    PubMed  CAS  Google Scholar 

  27. Claessens C, Claessens P, Bloemen H, Claessens M, Verbanck M, Fagard R, Claessens J: Structural heart adaptations in triathletes. Acta Cardiol 54: 317-325, 1999

    PubMed  CAS  Google Scholar 

  28. Jonsdottir I, Lungersten L, Johansson C, Wennmalm A, Thoren P, Hoffmann P: Increase in nitric oxide formation after chronic voluntary exercise in spontaneously hypertensive rats. Acta Physiol Scand 162: 149-153, 1998

    Article  PubMed  CAS  Google Scholar 

  29. MacCarthy PA, Shah AM: The role of nitric oxide in the regulation of myocardial relaxation and diastolic function. Asia Pacific Heart J 7: 29-37, 1998

    Article  Google Scholar 

  30. Neubauer S, Horn M, Pabst T, Harre K, Stromer H, Bertsch G, Sandstede J, Ertl G, Hahn D, Kochsiek K: Cardiac high-energy phosphate metabolism in patients with aortic valve disease assessed by 31P-magnetic resonance spectroscopy. J Invest Med 45: 453-62, 1997

    CAS  Google Scholar 

  31. Conway MA, Allis J, Ouwerkerk R, Niioka T, Rajagopalan B, Radda GK: Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet 338: 973-6, 1991

    Article  PubMed  CAS  Google Scholar 

  32. Zhang J, Merkle H, Hendrich K, Garwood M, From AH, Ugurbil K, Bache RJ: Bioenergetic abnormalities associated with severe ventricular hypertrophy. J Clin Invest 92: 993-1003, 1993

    Article  PubMed  CAS  Google Scholar 

  33. Zhang J, Toher C, Erhard M, Zhang Y, Ugurbil K, Bache RJ, Lange T, Homans DC: Relationships between myocardial bioenergetics and left ventricular function in hearts with volume-overloaded hypertrophy. Circulation 96: 334-343, 1997

    PubMed  CAS  Google Scholar 

  34. O'Donnell MJ, Narayan P, Bailey MQ, Abduljalil AM, Altschuld RA, McCune SA, Robitaille PM: 31P-NMR analysis of congestive heart failure in the SHHF/Mcc-facp rat heart: J Mol Cell Cardiol 30: 235-241, 1998

    Article  Google Scholar 

  35. Coates AJS: Exercise training in heart failure. Curr Control Trials Cardiovasc Med 1: 155-160, 2000

    Article  Google Scholar 

  36. Belardinelli R, Georgiou D, Cianci G, Purcaro A: Randomized, controlled trial of long-term moderate exercise training in chronic heart failure. Circulation 99: 1173-1182, 1999

    PubMed  CAS  Google Scholar 

  37. Shephard RJ, Balady GJ: Exercise as cardiovascular therapy. Circulation 99: 963-972, 1999

    PubMed  CAS  Google Scholar 

  38. Willenheimer R, Rydverg E, Cline C, Broms K, Hillberger B, Oberg L, Erhardt L: Effects on quality of life, symptoms and daily activity 6 months after termination of an exercise training programme in heart failure. Int J Cardiol 77: 25-31, 2001

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fenning, A., Harrison, G., Dwyer, D. et al. Cardiac adaptation to endurance exercise in rats. Mol Cell Biochem 251, 51–59 (2003). https://doi.org/10.1023/A:1025465412329

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025465412329

Navigation