Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ceratophyllum demersum – phosphorus interactions in nutrient enriched aquaria

Abstract

High macrophyte density in shallow lakes is often associated with clear water, especially when the non-rooted, submerged angiosperm Ceratophyllum demersum is dominant. Lack of true roots and high surface area:volume ratio suggest that nutrient uptake from the water column by C. demersum may be high. Therefore, possible competition for nutrients, including phosphorus (P), could contribute to phytoplankton inhibition.

C. demersum ability to absorb and store P at four nutrient levels (unenriched + three enrichment treatments) was investigated in a 34-day laboratory experiment using agar-based nutrient diffusing substrates (NDSs). P uptake rates and abatement potential by C. demersum were assessed from total phosphorus concentration (TP) patterns in the water column. Changes in C. demersum biomass (wet weight) also were determined. C. demersum took up P quickly. Some P release occurred during the experiment, especially under high nutrient conditions. Initial net P uptake by C. demersum was high, but medium-term (five weeks) average uptake was relatively low. Projected long-term net P uptake approached zero. Plant biomass loss and production of macrodetritus (plant fragments >1 mm) were highest in unenriched aquaria. Biomass loss in the lower enriched treatments was equally divided between loss as macrodetritus and as dissolved organic matter (DOM), but loss as DOM was four times higher than loss as macrodetritus in the highest nutrient treatment. The results suggest that medium- and long-term low phytoplankton biomass in C. demersum-rich lakes is achieved via mechanisms other than direct competition for nutrients from the water column.

This is a preview of subscription content, log in to check access.

References

  1. Baldaccini, G. N., P. Ercolini & M. Mattioli, 1997. Eutrofizzazione del Lago diMassaciuccoli. Composizione ed evoluzione temporale delle comunitá zooplanctonica e macrobentonica. In Cenni, M. (ed.), Lago di Massaciuccoli. Tredici Ricerche Finalizzate al Risanamento; Secondo Contributo. Ente Parco Regionale Migliarino-San Rossore-Massaciuccoli, Pisa, I: 289–346.

  2. Barko, J. W. & R. M. Smart, 1980. Mobilization of sediment phosphorus by submersed freshwater macrophytes. Freshwat. Biol. 10: 229–238.

  3. Best, E. P. H. & J. T. Meulemans, 1979. Photosynthesis in relation to growth and dormancy in Ceratophyllum demersum. Aquat. Bot. 6: 53–65.

  4. Best, M. D. & K. E. Mantai, 1978. Growth of Myriophyllum: sediment or lake water as the source of nitrogen and phosphorus. Ecology 59: 1076–1080.

  5. Bishop, P. L. & T. Eighmy, 1989. Aquatic waste water treatment using Elodea nuttallii. J. Wat. Pollut. Cont. Fed. 61: 641.

  6. Blüm, V., H. Holländer-Czytko & D. Voeste, 1997. The closed equilibrated biological aquatic system: general concept and aspects of botanical research. Planta 203: S201–S208.

  7. Brandl, Z., J. Brandlová & M. Poštolková, 1970. The influence of submerged vegetation on the photosynthesis of phytoplankton in ponds. Rozpr. Česk. Akad. Ved., Rada Mat. Prír. Ved. 80: 33–62.

  8. Brown, G. G., W. A. Maher, R. H. Norris & J. Mathieu, 2001. Problems with the use of terracotta clay saucers as phosphorusdiffusing substrata to assess nutrient limitation of epilithic algae. Freshwat. Biol. 46: 623–632.

  9. Carignan, R., 1982. An empirical model to estimate the relative importance of roots in phosphorus uptake by aquatic macrophytes. Can. J. Fish. aquat. Sci. 39: 243–247.

  10. Carrick, H. J., R. L. Lowe & J. T. Rotenberry, 1988. Guilds of benthic algae along nutrient gradients: relationships to algal community diversity. J. N. Am. Benthol. Soc. 7: 117–128.

  11. Clesceri, L. S., A. E. Greenberg & R. R. Trussell (eds), 1989. Standard Methods for the Examination of Water and Wastewater, 17th ed. American Public Health Association, Washington, DC.

  12. Corkum, L., 1996. Responses of chlorophyll a, organic matter, and macroinvertebrates to nutrient addition in rivers flowing through agricultural and forested land. Arch. Hydrobiol. 136: 391–411.

  13. DeMarte, J. A. & R. T. Hartman, 1974. Studies on the absorption of 32P, 59Fe, and 45Ca by water-milfoil (Myriophyllum exalbescens Fernald). Ecology 55: 188–194.

  14. Denny, P., 1972. Sites of nutrient absorption in aquatic macrophytes. J. Ecol. 60: 819–829.

  15. Eugelink, A. H., 1998. Phosphorus uptake and active growth of Elodea canadensis Michx. and Elodea nuttallii (Planch.) St. John. Wat. Sci. Tech. 37(3): 59–65.

  16. Fitzgerald, G. P., 1969. Some factors in the competition or antagonism among bacteria, algae, and aquatic weeds. J. Phycol. 5: 351–359.

  17. Goulder, R., 1969. Interactions between the rates of production of a freshwater macrophyte and phytoplankton in a pond. Oikos 20: 300–309.

  18. Hecky, R. E. & P. Kilham, 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 33: 796–822.

  19. Hernández, I., J. R. Andría, M. Christmas & B. A. Whitton, 1999. Testing the allometric scaling of alkaline phosphatase activity to surface/volume ratio in benthic marine macrophytes. J. exp. mar. Biol. Ecol. 241: 1–14.

  20. Jasser, I., 1995. The influence of macrophytes on a phytoplankton community in experimental conditions. Hydrobiologia 306: 21–32.

  21. Jeppesen, E., T. L. Lauridsen, T. Kairesalo & M. R. Perrow, 1998. Impact of submerged macrophytes on fish-zooplankton interactions in lakes. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer-Verlag, New York, NY: 91–114.

  22. Jeschke, W. D. & W. Simonis, 1965. Uber die Aufnahme von Phosphat und Sulfationen durch Blätter von Elodea densa und ihre Beeinflussung durch Licht, Temperatur und Außenkonzentration. Planta 67: 6–32.

  23. Khedr, A. H. A. & M. A. El-Demerdash, 1997. Distribution of aquatic plants in relation to environmental factors in the Nile Delta. Aquat. Bot. 56: 75–86.

  24. Kornijów, R., 1989. Macrofauna of elodeids of two lakes of different trophy. I. Relationships between plants and structure of fauna colonizing them. Ekol. Polska 37: 31–48.

  25. Kussatz, C., A. Gnauck, W. Jorga, H. G. Mayer, L. Schürmann & G. Weise, 1984. Untersuchungen zur Phosphataufnahme durch Unterwasserpflanzen. Acta Hydrochim. Hydrobiol. 12: 659–677.

  26. Ling, L. L. H. & M. Mansor, 1996. The effect of three aquatic plants on aquarium water quality. Malaysian Appl. Biol. 25: 25–29.

  27. Lombardo, P., 1995. Substrate Preference of Littoral Macroinvertebrates During Seasonal Succession. Unpublished MS Thesis, Kent State University, Kent, OH.

  28. Lombardo, P., 2001. Effects of Freshwater Gastropods on Epiphyton, Macrophytes, and Water Transparency under Meso-to Eutrophic Conditions. PhD Dissertation, Kent State University, Kent, OH.

  29. Lombardo, P. & G. D. Cooke, submitted. Resource use and partitioning by two co-occurring freshwater gastropod species.

  30. Madsen, T. V. & N. Cedergreen, 2002. Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream. Freshwat. Biol. 47: 283–291.

  31. Maine, M. A., M. C. Panigatti & M. J. Pizarro, 1998. Role of macrophytes in phosphorus removal in Parana medio wetlands. Pol. Arch. Hydrobiol. 45: 23–34.

  32. Mjelde, M. & B. Faafeng, 1997. Ceratophyllum demersum (L.) hampers phytoplankton development in some small Norwegian lakes over a wide range of phosphorus level and geographical latitude. Freshwat. Biol. 37: 355–365.

  33. Moeller, R. G., J. M. Burkholder & R. G. Wetzel, 1988. Signi-ficance of sedimentary phosphorus to a submersed freshwater macrophyte (Najas flexilis) and its algal epiphytes. Aquat. Bot. 32: 261–281.

  34. Moss, B., J. Madgwick & G. Phillips, 1996. A Guide to the Restoration of Nutrient Enriched Shallow Lakes. The Broads Authority, Norwich, GB.

  35. Nakai, S., Y. Inoue, M. Hosomi & A. Murakami, 1999. Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Wat. Sci. Tech. 39(8): 47–53.

  36. Neal, C., M. Neal & H. Wickman, 2000. Phosphate measurement in natural waters: two examples of analytical problems associated with silica interference using phosphomolybdic acid methodologies. Sci. Tot. Environ. 251/252: 511–522.

  37. Ozimek, T., E. van Donk & R. D. Gulati, 1993. Growth and nutrient uptake of two species of Elodea in experimental conditions and their role in nutrient accumulation in a macrophyte-dominated lake. Hydrobiologia 251: 13–18.

  38. Pelton, D. K., S. N. Levine & M. Braner, 1998. Measurement of phosphorus uptake by macrophytes and epiphytes from the LaPlatte River (VT) using 32P in stream microcosms. Freshwat. Biol. 39: 285–299.

  39. Pomogyi, P., E. P. H. Best, J. H. A. Dassen & J. J. Boon, 1984. On the relation between age, plant composition and nutrient release from living and killed Ceratophyllum plants. Aquat. Bot. 19: 243–250.

  40. Rattray, M. R., C. Howard-Williams & J. M. A. Brown, 1991. Sediment and water as sources of nitrogen and phosphorus for submerged rooted aquatic macrophytes. Aquat. Bot. 40: 225–237.

  41. Rørslett, B., D. Berge & S. W. Johansen, 1986. Lake enrichment by submersed macrophytes: a Norwegian whole-lake experience with Elodea canadensis. Aquat. Bot. 26: 325–340.

  42. Sand-Jensen, K. & J. Borum, 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwater and estuaries. Aquat. Bot. 41: 137–175.

  43. Sand-Jensen, K. & T.-V. Madsen, 1991. Minimum light requirements of submerged freshwater macrophytes in laboratory growth experiments. J. Ecol. 79: 749–764.

  44. Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8: 275–279.

  45. Solski, A., 1962. Mineralizacja ro´slin wodnych. I. Uwalnianie fosforu i pota´su przez wymywanie. Pol. Arch. Hydrobiol. 23: 167–196.

  46. Søndergaard, Mo., 1981. Kinetics of extracellular release of 14C-labelled organic carbon by submerged macrophytes. Oikos 36: 331–347.

  47. Spencer, W. E. & R. G. Wetzel, 1993. Acclimation of photosynthesis and dark respiration of a submersed angiosperm beneath ice in a temperate lake. Plant Physiol. 101: 985–991.

  48. Toetz, D. W., 1971. Diurnal uptake of NO3 and NH4 by a Ceratophyllum-periphyton community. Limnol. Oceanogr. 16: 819–822.

  49. Underwood, G. J. C., J. D. Thomas & J. H. Baker, 1992. An experimental investigation of interactions in snail-macrophyteepiphyte systems. Oecologia 91: 587–595.

  50. van Donk, E., R. D. Gulati, A. Iedema & J. T. Meulemans, 1993. Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake. Hydrobiologia 251: 19–26.

  51. van Donk, E., 1998. Switches between clear and turbid water states in a biomanipulated lake (1986–1996): the role of herbivory on macrophytes. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer-Verlag, New York, NY: 290–297.

  52. Vestergaard, O. & K. Sand-Jensen, 2000. Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes. Aquat. Bot. 67: 85–107.

  53. Wetzel, R. G., 2001. Limnology, Lake and River Ecosystems, 3rd ed. Saunders College Publishing, Philadelphia, PA.

  54. Zar, J. H., 1984. Biostatistical Analysis, 2nd ed. Prentice Hall, Englewood Cliffs, NJ.

  55. Zhou Y., J. Li & Y. Fu, 2000. Effects of submerged macrophytes on kinetics of alkaline phosphatase in Lake Donghu – I. Unfiltered water and sediments. Wat. Res. 34: 3737–3742.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lombardo, P., Cooke, G.D. Ceratophyllum demersum – phosphorus interactions in nutrient enriched aquaria. Hydrobiologia 497, 79–90 (2003). https://doi.org/10.1023/A:1025461604808

Download citation

  • macrophytes
  • Ceratophyllum demersum
  • phosphorus
  • uptake