Hydrobiologia

, Volume 493, Issue 1–3, pp 95–114 | Cite as

Interdecadal change in the deep Puget Sound benthos

Article

Abstract

Data from quantitative samples of the benthos at a 200-m site in central Puget Sound, collected twice yearly in most years between 1963 and 1992, were evaluated to determine the extent to which species composition in a continental-shelf depth community exhibits long-term persistence. Study results showed that the most abundant species were consistently present over the 30-year period. However, measures of species composition (e.g., similarity, diversity) reveal a subtle, gradual change in the community over time. Among the changes are (1) multi-year periods of greatly increased abundance of the common species; (2) an overall increase in the total abundance of the benthic community beginning in the mid-1970s; (3) periods of increased abundance, during the late 1970s and early 1980s, of two species that are tolerant of organic enrichment; and (4) the steady decline in abundance of the large burrowing echinoderm, Brisaster latifrons as a consequence of the lack of recruitment to the site since 1970. Despite the conspicuousness of these changes, there are no observed environmental factors that readily explain them. Circumstantial evidence suggests that climate-related change in Puget Sound circulation beginning in the mid-1970s, organic enrichment associated with a nearby large source of primary-treated sewage, and the influence of changes in the abundance of the large echinoderms on the smaller species are potential agents of change. The principle reasons for our inability to identify causes of long-term change in the Puget Sound benthos are (a) inconsistent long-term monitoring of environmental variables, (b) the lack of quantitative information about long-term changes in plankton and fish populations, (c) lack of knowledge of specific predator/prey and competitive interactions in soft bottom benthos, (d) unknown influence of moderate levels of contamination on biota; and (e) lack of understanding of possible linkages between climate regime shifts and fluctuations in local biological populations.

Puget Sound benthic community long-term change climate change waste disposal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, J. W., R. M. Thom & K. K. Chew, 1980. Impact of a combined sewer overflow on the abundance, distribution and community structure of subtidal benthos. Mar. Envir. Res. 4: 3–23.Google Scholar
  2. Austen, M. C., J. B. Buchanan, H. G. Hunt, A. B. Josefson & M. A. Kendall, 1991. Comparison of long–term trends in benthic and pelagic communities of the North Sea. J. mar. biol. Ass. U. K. 71: 179–190.Google Scholar
  3. Bargmann, G. G., 1988. Trends in abundance of economically important marine fish in Puget Sound. Proceedings, First Annual Meeting on Puget Sound Research, Puget Sound Water Quality Authority, Seattle 1: 72–76.Google Scholar
  4. Birke, L. E. Jr., L. E. Coate & R. C. Bain Jr., 1983. Puget Sound case study. In Myers, E. P.& E. T. Harding (eds), Ocean Disposal of Municipal Wastewater: Impacts on the Coastal Environment. Sea Grant College Program Report MITSG 83–33, Appendix B: 823–881.Google Scholar
  5. Boesch, D. F., R. J. Diaz & R. W. Virnstein, 1976. Effects of tropical storm Agnes on soft–bottom macrobenthic communities of the James and York estuaries and the lower Chesapeake Bay. Chesapeake Sci. 17: 246–259.Google Scholar
  6. Boesch, D. F. & R. Rosenberg, 1981. Response to stress in marine benthic communities. In Barrett, G. W. & R. Rosenberg (eds), Stress Effects on Natural Ecosystems. John Wiley: 179–200.Google Scholar
  7. Bright, D. A. & D. V. Ellis, 1989. Aspects of histology in Macoma carlottensis (Bivalvia: Tellinidae) and in situ histopathology related to mine–tailings discharge. J. mar. biol. Ass. U.K. 69: 447–464.Google Scholar
  8. Brown, S. K., B. A. Maguire, J. W. Armstrong & A. C. Duxbury, 1988. Water quality trends in Puget Sound. Proceedings, First Annual Meeting on Puget Sound Research, Puget Sound Water Quality Authority, Seattle 1: 33–43.Google Scholar
  9. Buchanan, J. B., 1967. Dispersion and demography of some infaunal echinoderm populations. Symp. zool. Soc. Lond. 20: 1–11.Google Scholar
  10. Clifford, H. T. & W. Stephenson, 1975. An Introduction to Numerical Classification. Academic Press, New York: 229 pp.Google Scholar
  11. Coan, E. V., 1971. The Northwest American Tellinidae. Veliger 14 (supplement): 1–63.Google Scholar
  12. Deichman, E., 1937. The Templeton Crocker Expedition. IX. Holothurians from the Gulf of California, the west coast of lower California and Clarion Island. Zoologica, New York 22: 161–176.Google Scholar
  13. De Ridder, C., M. Jangoux & E. Van Impe, 1985. Food selection and absorption efficiency in the spatangoid echinoid, Echinocardium cordatum (Echinodermata). In Keegan, B. F. & B. D. S. O’Connor, (eds), Echinodermata. Proceedings of the 5th International Echinoderm Conference, Galway, September 1984. A. A. Balkema, Rotterdam: 245–251.Google Scholar
  14. Dexter, R. N., L. S. Goldstein, P. M. Chapman & E. A. Quinlan, 1985. Temporal trends in selected environmental parameters monitored in Puget Sound. National Oceanic and Atmospheric Administration Technical Memorandum NOS ORCA 19: 1–166.Google Scholar
  15. Duxbury, A. C., 1975. Orthophosphate and dissolved oxygen in Puget Sound. Limnol. Oceanogr. 20: 270–274.Google Scholar
  16. Ebbesmeyer, C. C. & C. A. Barnes, 1980. Control of a fjord basin’s dynamics by tidal mixing in embracing sill zones. Estuar. coast mar. Sci. 11: 311–330.Google Scholar
  17. Ebbesmeyer, C. C., D. R. Cayan, D. R., McLain, F. H. Nichols, D. H. Peterson & K. T. Redmond, 1991. 1976 Step in the Pacific climate–forty environmental changes between 1968–1975 and 1977–1984. In Betancourt, J. L.& V. L. Tharp (eds), Seventh Annual Pacific Climate (PACLIM)Workshop, Asilomar, California, April 1990 [Proceedings]. Interagency Ecological Studies Program for the Sacramento–San Joaquin Estuary, Technical Report 26: 115–126.Google Scholar
  18. Ebbesmeyer, C. C., C. A. Coomes, G. A. Cannon & D. E. Bretschneider, 1989. Linkage of ocean and fjord dynamics at decadal period. Geophys. Monogr. 55: 399–417.Google Scholar
  19. Ebbesmeyer, C. C., J. Q. Word & C. A. Barnes, 1988. Puget Sound: a fjord system homogenized with water recycled over sills by tidal mixing. In Kjerfve, B. (ed.), Hydrodynamics of Estuaries, Vol. II, Estuarine Case Studies. CRC Press, Boca Raton, Florida: 17–29.Google Scholar
  20. Edmondson, W. T., 1991. The Uses of Ecology: Lake Washington and Beyond. University of Washington Press, Seattle: 329 pp.Google Scholar
  21. Essink, K. & J. J. Beukema, 1986. Long–term changes in intertidal flat macrozoobenthos as an indicator of stress by organic pollution. Hydrobiologia 142: 209–215.Google Scholar
  22. Fauchald, K. & P. A. Jumars, 1979. The diet of worms: a study of polychaete feeding guilds. Oceanogr. mar. biol. Ann. Rev. 17: 193–284.Google Scholar
  23. Fromentin, J. M., F. Ibanez, J. C. Dauvin, J. M. Dewarumez & B. Elkaim, 1997. Long–term changes of four macrobenthic assemblages from 1978 to 1992. J. mar. biol. Ass. U. K. 77: 287–310.Google Scholar
  24. Gray, J. S. & H. Christie, 1983. Predicting long–term changes in marine benthic communities. Mar. Ecol. Prog. Ser. 13: 87–94.Google Scholar
  25. Hare, S. R. & N. J. Mantua, 2000. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr. 47: 103–145.Google Scholar
  26. Heip, C., B. F. Keegan & J. R. Lewis, (eds), 1986. Long–term Changes in Coastal Benthic Communities. Hydrobiologia 142: 1–340.Google Scholar
  27. Holland, A. F. & B. Kjerfve (eds), 1985. Long–term Estuarine and Coastal Data Sets. Estuaries 8 (2A): 81–180.Google Scholar
  28. Horner, R. A., J. R. Postel & J. E. Rensel, 1990. Noxious phytoplankton blooms in Western Washington waters: a review. In Graneli, E., B. Sundstrom, L. Edler & D. M. Anderson, (eds), Toxic Marine Phytoplankton. Proceedings of the 4th International Conference on Toxic Marine Phytoplankton, June 1989. Elsevier, New York: 171–176.Google Scholar
  29. Josefson, A. B., 1981. Persistence and structure of two deep macrobenthic communities in the Skagerrak (West coast of Sweden). J. exp. mar. Biol. Ecol. 50: 63–97.Google Scholar
  30. Josefson, A. B., J. N. Jensen & G. Ærtebjerg, 1993. The benthos community structure anomaly in the late 1970s and early 1980s–a result of a major food pulse? J. exp. mar. Biol. Ecol. 172: 31–45.Google Scholar
  31. King County Department of Natural Resources, 1998. Water Quality Status Report for Marine Waters, 1996. Seattle: 143 pp.Google Scholar
  32. Kleppel, G. S., J. Q. Word & J. Roney, 1980. Demersal fish feeding in Santa Monica Bay and off Palos Verdes. In Bascom, W. (ed.), Coastal Water Research Project Biennial Report for the years 1979–1980. Southern California CoastalWater Research Project, Long Beach: 309–318.Google Scholar
  33. Kröncke, I., J. W. Dippner, H. Heyen & B. Zeiss, 1998. Long–term changes in macrofaunal communities off Norderney (East Frisia, Germany) in relation to climate variability. Mar. Ecol. Prog. Ser. 167: 25–36.Google Scholar
  34. Lefkovitz, L. F., V. I. Cullinan & E. A. Crecelius, 1997. Historical trends in the accumulation of chemicals in Puget Sound. National Oceanic and Atmospheric Administration Technical Memorandum NOS ORCA 111: 1–60.Google Scholar
  35. Lie, U., 1968. A quantitative study of benthic infauna in Puget Sound, Washington, U.S.A., in 1963–64. FiskDir. Skr. Ser. HavUnders. 14: 229–556.Google Scholar
  36. Lie, U., 1974. Distribution and structure of benthic assemblages in Puget Sound, Washington, U.S.A. Mar. Biol. 26: 203–223.Google Scholar
  37. Lie, U. & R. A. Evans, 1973. Long–term variability in the structure of subtidal benthic communities in Puget Sound, Washington, U.S.A. Mar. Biol. 21: 122–126.Google Scholar
  38. Llansó, R. J., 1998. The distribution and structure of soft–bottom macrobenthos in Puget Sound in relation to natural and anthropogenic factors. Proceedings, 1998 Puget Sound Research Conference, Seattle.Google Scholar
  39. Long, E. R., J. Hameedi, A. Robertson, M. Dutch, S. Aasen, K. Welsh, S. Magoon, R. S. Carr, T. Johnson, J. Biedenbach, K. J. Scott, C. Mueller & J. W. Anderson, 2000. Sediment quality in Puget Sound, Year 2–Central Puget Sound. U. S. Department of Commerce National Oceanic and Atmospheric Administration Technical Memo NOS NCCOS CCMA 147 & Washington State Department of Ecology Environmental Assessment Program Publication 00–03–055: 1–343.Google Scholar
  40. Mahnken, C. V. W., 1993. Benthic Faunal Recovery and Succession after Removal of a Marine Fish Farm. Ph.D. Dissertation, University of Washington: 290 pp.Google Scholar
  41. Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace & R. C. Francis, 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. am. Met. Soc. 78: 1069–1079.Google Scholar
  42. McEuen, F. S., 1988. Spawning behaviors of northeast Pacific sea cucumbers (Holothuroidea: Echinodermata). Mar. Biol. 98: 565–585.Google Scholar
  43. Miller, B. S., L. L. Moulton & J. H. Stadler, 1991. Long–term trends in Puget Sound marine fishes: selected data sets. Washington Sea Grant Program Report FRI–UW–9105: 1–38.Google Scholar
  44. Nichols, F. H., 1974. Sediment turnover by a deposit–feeding polychaete. Limnol. Oceanogr. 19: 945–950.Google Scholar
  45. Nichols, F. H., 1975. Dynamics and energetics of three depositfeeding benthic invertebrate populations in Puget Sound, Washington. Ecol. Monogr. 45: 57–82.Google Scholar
  46. Nichols, F. H., 1985. Abundance fluctuations among benthic invertebrates in two Pacific estuaries. Estuaries 8: 136–144.Google Scholar
  47. Nichols, F. H., 1988. Long–term changes in a deep Puget Sound benthic community: local or basin–wide? Proceedings, First Annual Meeting on Puget Sound Research, Puget Sound Water Quality Authority, Seattle: 1: 65–71.Google Scholar
  48. Nichols, F. H., D. A. Cacchione, D. E. Drake & J. K. Thompson, 1989. Emergence of burrowing urchins from California continental shelf sediments–a response to alongshore current reversals? Estuar. coast. shelf Sci. 29: 171–182.Google Scholar
  49. Palsson, W. A., J. C. Hoeman, G. G. Bargmann & D. E. Day, 1997. 1995 Status of Puget Sound bottomfish stocks (revised). Washington Department of Fish & Wildlife, Olympia, Report MRD97–03: 1–98.Google Scholar
  50. Pearce, J. B., 1971. Indicators of solid waste pollution. Mar. Pollut. Bull. 2: 11.Google Scholar
  51. Pearson, T. H., G. Duncan & J. Nuttall, 1986. Long term changes in the benthic communities of Loch Linnhe and Loch Eil (Scotland). Hydrobiologia 142: 113–119.Google Scholar
  52. Rhoads, D. C. & D. K. Young, 1971. Animal–sediment relations in Cape Cod Bay, Massachusetts. II. Reworking by Molpadia oolitica (Holothuroidea). Mar. Biol. 11: 255–261.Google Scholar
  53. Schmitt, C., 1990. Marine fish resources, users, and managers: how are we doing? In Armstrong, J.W. & A. E. Copping (eds), Status and Management of Puget Sound’s Biological Resources. U.S. Environmental Protection Agency and Puget Sound Water Quality Authority, proceedings of a forum, September 1989, Seattle: 118–141.Google Scholar
  54. Spencer, B. E., M. J. Kaiser & D. B. Edwards, 1997. Ecological effects of intertidal Manila clam cultivation: observations at the end of the cultivation phase. J. app. Ecol. 34: 444–452.Google Scholar
  55. Tetra Tech, Incorporated, 1990, Puget Sound Ambient Monitoring Program 1989 Marine Sediment Monitoring, Final Report. Washington Department of Ecology, Olympia, WA: 254 pp.Google Scholar
  56. Thorson, G., 1957. Bottom communities (sublittoral or shallow shelf). Geol. Soc. am. Mem. 67: 461–534.Google Scholar
  57. Tunberg, B. G. & W. G. Nelson, 1998. Do climatic oscillations influence cyclical patterns of soft bottom macrobenthic communities on the Swedish west coast? Mar. Ecol. Prog. Ser. 170: 85–94.Google Scholar
  58. Warwick, R. M. & B. L. Bayne (eds), 1993. Changes in Marine Communities. J. exp. mar. Biol. Ecol. 172: 1–238.Google Scholar
  59. Winter, D. F., K. Banse & G. C. Anderson, 1975. The dynamics of phytoplankton blooms in Puget Sound, a fjord in the northwestern United States. Mar. Biol. 29: 139–176.Google Scholar
  60. Word, J. Q., 1978. The infaunal trophic index. Southern California Coastal Water Research Project Annual Report, 1978: 19–39.Google Scholar
  61. Word, J. Q., 1990. The Infaunal Trophic Index, a Functional Approach to Benthic Community Analyses. Ph.D. dissertation, University of Washington: 297 pp.Google Scholar
  62. Ziegelmeier, E., 1978. Macrobenthos investigations in the eastern part of the German Bight from 1950 to 1974. Rapp. P.–v. Réun. Cons. int. Explor. Mer 172: 432–444.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.U.S. Geological SurveyMenlo ParkUSA

Personalised recommendations