Skip to main content
Log in

Effect of irradiance, temperature and salinity on growth and toxin production by Nodularia spumigena

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The object of this work was to determine, using a full-factorial experiment, the influence of temperature, irradiance and salinity on growth and hepatotoxin production by Nodularia spumigena, isolated from Lake Alexandrina in the south-east of South Australia. Higher levels of biomass (determined as particulate organic carbon, POC), toxin production and intracellular toxin concentration per mg POC were produced under light limited conditions (30 μmol m−2 s−1) and at salinities equal to or greater than those experienced in Lake Alexandrina. Both highest biomass and total toxin production rates were recorded at temperatures equal to or greater than those of the lake (20 and 30 °C). The temperature at which maximum biomass and toxin production was recorded decreased from 30 °C for cultures grown at 30 μmol m−2 s−1 to 20 °C when grown at 80 μmol m−2 s−1. In contrast, intracellular toxin per mg POC was highest at the lowest growth temperature, 10 °C, at both 30 and 80 μmol m−2 s−1. It appears that the optimum temperature for biosynthetic pathways used in the production of toxin is lower than the optimum temperature for those pathways associated with growth. Intracellular toxin levels were higher in cells cultured at 10 °C/30 μmol m−2 s−1 whereas the majority of the toxin was extracellular in cells grown at 30 °C/30 μmol m−2 s−1. This implies that the highest concentration of toxin in lake water would occur under high temperature and high irradiance conditions. Individual environmental parameters of salinity, irradiance and temperature were all shown to influence growth and toxin production. Notwithstanding, the overall influence of these three parameters on toxin production was mediated through their effect upon growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belov, A. P., 1998. A model of phycotoxin release by cyanobacterial cells. Ecol. Model. 110: 105–117.

    Google Scholar 

  • Blackburn, S. I., M. S. McCausland, C. J. S. Bolch, S. J. Newman & G. J. Jones, 1996. Effect of salinity on growth and toxin production in cultures of the bloom–forming cyanobacterium Nodularia spumigena from Australian Waters. Phycologia 35: 511–522.

    Google Scholar 

  • Carmichael, W.W., 1986. Algal Toxins. Adv. Bot. Res. 12: 47–93.

    Google Scholar 

  • Codd, G. A., 1995. Cyanobacterial toxins: occurrance, properties and biological significance. Wat. Sci. Tech. 32(4): 149–156.

    Google Scholar 

  • Codd, G. A., S. G. Bell & W. P. Brooks, 1989. Cyanobacterial toxins in water. Water Sci. Tech. 21(3): 1–13.

    Google Scholar 

  • Codd, G. A., D. A. Steffensen, M. D. Burch & P. D. Baker, 1994. Toxic blooms of cyanobacteria in Lake Alexandrina, South Australia–Learning from History. Aust. J. Mar. Freshwat. Res. 45: 731–736.

    Google Scholar 

  • Eriksson, J. E., D. Toivola, J. A. O. Meriluoto, H. Karaki, Y. G. Han & D. Hartshorne, 1990. Hepatocyte deformation induced by cyanobacterial toxins reflects inhibition of protein phosphatases. Biochem. Biophys. Res. Commun. 173 (3): 1347–1353.

    Google Scholar 

  • Francis, G., 1878. Poisonous Australian Lake. Nature 18: 11–12.

    Google Scholar 

  • Gorham, P. R., J. McLachlan, U. T. Hammer & W. K. Kim, 1964. Isolation and culture of toxic strains of Anabaena flos–aquae. de Breb. Verh. int. Ver. Limnol. 15: 796–804.

    Google Scholar 

  • Hobson, P., H. J. Fallowfield & M. B. Burch, 1999. Effect of total dissolved solids and irradiance on growth and toxin production by Nodularia spumigena. J. Appl. Phycol. 11: 551–558.

    Google Scholar 

  • Hobson, P. & H. J. Fallowfield, 2001. Effect of salinity on photosynthetic activity of Nodularia spumigena. J. Appl. Phycol. 13 (6): 493–499.

    Google Scholar 

  • Huber, A. L., 1985. Factors affecting the germination of akinetes of Nodularia spumigena (cyanobacteriaceae). Appl. Environ. Microbiol. 49: 73–78.

    Google Scholar 

  • Jones, G. J., S. I. Blackburn & N. S. Parker, 1994. A toxic bloom of Nodularia spumigena Mertens in Orielton Lagoon, Tasmania. Aust. J. Mar. Freshwat. Res. 45: 787–800.

    Google Scholar 

  • Kaebernick, M., B. A. Neilan, T. Borner, & E. Dittmann, 2000. Light and the transcriptional response of the microcystin biosynthesis gene cluster. Appl. Environ. Microbiol. 66(8):3387–3392.

    Google Scholar 

  • Komarek, J.,M. Hübel, H. Hübel & J. Šmarda, 1993 The Nodularia studies 2. Taxonomy. Arch. Hydrobiol. (Suppl.) (Algol. Stud.) 68: 1–25.

    Google Scholar 

  • Lehtimäki, J., K. Sivonen, R. Luukkainen, & S. I. Niemelä, 1994. The effects of incubation time, temperature, light, salinity and phosphorous on growth and hepatotoxin production by Nodularia strains. Arch. Hydrobiol. 130(3): 269–282.

    Google Scholar 

  • Lehtimäki, J., P. Moisander, K. Sivonen, & K. Kononen, 1997. Growth, nitrogen fixation, and nodularin production by two Baltic Sea cyanobacteria. Appl. Environ. Microbiol. 63(5): 1647–1656.

    Google Scholar 

  • Lukatelich, R. J. & A. J. McComb, 1986. Nutrient levels and the development of diatom and blue–green algal blooms in a shallow Australian estuary. J. Plankton Res. 8(4): 597–618.

    Google Scholar 

  • Ohta, T., E. Sueoka, N. Iida, A. Komori, M. Suganuma, R. Nishiwaki, M. Tatematsu, S. Kim, W. W. Carmichael & H. Fujiki, 1994. Nodularin, a potent inhibitor of protein phosphatases 1 and 2A, is a new environmental carcinogen in male f344 rat liver. Cancer Res. 54(Dec. 15): 6402–6406.

    Google Scholar 

  • Park, H., C. Iwami, M. F. Watanabe, K. Harada, T. Okino & H. Hayashi, 1998. Temporal variabilities of the concentrations of intra–and extracellular microcystin and toxic Microcystis species in a hypertrophic lake, lake Suwa, Japan (1991–1994). Environ. Toxicol. Water Qual. 13(1): 61–72.

    Google Scholar 

  • Peterson, R. G., 1985. Design and Analysis of Experiments. Marcel Dekker Inc., U.S.A..

    Google Scholar 

  • Rinehart, K. L., K. Harada, M. Namikoshi, C. Chen & C. A. Harvis, 1988. Nodularin, microcystin, and the configuration of Adda. J. am. Chem. Soc. 110(25): 8557–8558.

    Google Scholar 

  • Runnegar, M. T., S. Kong & N. Berndt, 1993. Protein phophatase inhibition and in vivo hepatotoxicity of microcystins. Am. J. Physiol. 28(6): 224–230.

    Google Scholar 

  • Sivonen, K., K. Kononen, W. W. Carmichael, A. M. Dahlem, K. L. Rinehart, J. Kiviranta & S. I. Niemelä, 1989. Occurrence of the Hepatotoxic Cyanobacterium Nodularia spumigena in the Baltic Sea and Structure of the Toxin. Appl. Environ. Microbiol. 55(8): 1990–1995.

    Google Scholar 

  • Sivonen, K., 1990. Effects of light, temperature, nitrate, orthophosphate and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Appl. Environ. Microbiol. 56(9): 2658–2666.

    Google Scholar 

  • Sivonen, K. & G. Jones, 1999. Cyanobacterial toxins. In Chorus, I. & J. Bartram (eds), Toxic Cyanobacteria in Water, A Guide to Public Health Consequences, Monitoring and Management.WHO Series in Environmental Management Routledge, London:41–111

    Google Scholar 

  • Utkilen, H. & N. Gjølme, 1992. Toxin production by Microcystis aeruginosa as a function of light in continuous cultures and its ecological significance. Appl. Environ. Microbiol. 58 (4): 1321–1325.

    Google Scholar 

  • Van der Westhuizen, A. J. & J. N. Eloff, 1985. Effect of temperature and light on the toxicity and growth of the blue green alga Microcystis aeruginosa (UV–006). Planta 163: 55–59.

    Google Scholar 

  • Watanabe, M. F. & S. Oishi, 1985. Effects of Environmental factors on Toxicity of a Cyanobacterium (Microcystis aeruginosa) under culture conditions. Appl. Environ. Microbiol. 49(5): 1342–1344.

    Google Scholar 

  • Wicks, R. J. & P. G. Theil, 1990. Environmental factors affecting the production of peptide toxins in floating scums of cyanobacterium Microcystis aeruginosa in a hypertrophic African reservoir. Environ. Sci. Technol. 24: 1413–1418.

    Google Scholar 

  • Yin, Q., W. W. Carmichael & W. R. Evans, 1997. Factors influencing growth and toxin production by cultures of the freshwater cyanobacterium Lyngbya wollei Farlow ex Gomont. J. Appl. Phycol. 9: 55–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.J. Fallowfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hobson, P., Fallowfield, H. Effect of irradiance, temperature and salinity on growth and toxin production by Nodularia spumigena . Hydrobiologia 493, 7–15 (2003). https://doi.org/10.1023/A:1025447318487

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025447318487

Navigation