Advertisement

Hydrobiologia

, Volume 493, Issue 1–3, pp 167–172 | Cite as

Potamopyrgus antipodarum(Mollusca:Hydrobiidae) in continental aquatic gastropod communities: impact of salinity and trematode parasitism

  • Claudia Gérard
  • Alexia Blanc
  • Katherine Costil
Article

Abstract

The structure of gastropod communities was examined from January to June 1999 in four sites of the streams of Mont Saint-Michel Bay along a gradient of salinity, and the occurrence of larval trematodes infecting snails was studied. Abundance and species richness of gastropods increased from polyhaline (95 snails, 1 species) to oligohaline waters (6672 snails, 6 species). Whatever the salinity, the most abundant species was Potamopyrgus antipodarum, an invasive non-indigenous species that represented 80% of the gastropods. Only one male was found in P. antipodarum populations suggesting a predominantly parthenogenetic mode of reproduction. Among 7218 gastropods collected, 1.2% were infected by larval trematodes: 5 species in Lymnaea peregra (4.4%), 4 species in Planorbis planorbis (12.0%), one echinostome in Physa acuta (0.2%), and a new species of Sanguinicola in P. antipodarum (0.5%). This is the first record of infected P. antipodarum in Europe. No parasites were found in polyhaline waters. The prevalence per host population varied from 0 to 100% depending on time of collection, salinity and host species. In the lowest-salinity site, abundance of gastropods and prevalence of trematodes were negatively correlated. The dominance of P. antipodarum in the gastropod communities is discussed in relation with euryhalinity, parthenogenesis and weak rate of parasitism.

Potamopyrgus gastropods trematodes salinity community structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baudoin, M., 1975. Host castration as a parasitic strategy. Evolution 29: 335–352.Google Scholar
  2. Colburn, E. A., 1988. Factors influencing species diversity in saline waters of Death Valley, U.S.A. Hydrobiologia 158: 215–226.Google Scholar
  3. Costil, K., G. B. J. Dussart & J. Daguzan, 2001. Parameters structuring populations of aquatic gastropods in the region of Mont Saint–Michel (France). Biodiv. Cons. 10: 1–18.Google Scholar
  4. Dybdahl, M. F. & C. M. Lively, 1998. Host–parasite coevolution: evidence for rare advantage and time–lagged selection in a natural population. Evolution 52: 1057–1066.Google Scholar
  5. Gérard, C., 1997. Importance du parasitisme dans la communauté de Gastéropodes de l’étang de Combourg (Bretagne, France). Parasite 4: 49–54.Google Scholar
  6. Gérard, C., 2001. Structure and temporal variation of trematode and gastropod communities in a freshwater ecosystem. Parasite 8: 275–287.Google Scholar
  7. Haynes, A., B. J. R. Taylor & M. E. Varley, 1985. The influence of the mobility of Potamopyrgus jenkinsi (Smith, E. A.) (Prosobranchia:Hydrobiidae) on its spread. Arch. Hydrobiol. 103: 497–508.Google Scholar
  8. Hughes, R. N., 1996. Evolutionary ecology of parthenogenetic strains of the prosobranch snail, Potamopyrgus antipodarum (Gray). Malacol. Rev. 6: 101–113.Google Scholar
  9. Hurd, H., 1990. Physiological and behavioural interactions between parasites and invertebrate host. Adv. Parasitol. 29: 271–318.Google Scholar
  10. Jacobsen, R. & V. E., Forbes, 1997. Clonal variation in life–history traits and feeding rates in the gastropod, Potamopyrgus antipodarum: performance across a salinity gradient. Funct. Ecol. 11: 260–267.Google Scholar
  11. Jokela, J. & C. M. Lively, 1995. Spatial variation in infection by digenetic trematodes in a population of freshwater snails (Potamopyrgus antipodarum). Oecologia 103: 509–517. 172Google Scholar
  12. Lafferty, K. D., 1993. Effects of parasitic castration on growth, reproduction and population dynamics of the marine snail Cerithidea californica. Mar. Ecol. Prog. Ser. 96: 229–237.Google Scholar
  13. Lively, C. M., 1992. Parthenogenesis in a freshwater snail: reproductive assurance versus parasitic release. Evolution 46: 907–913.Google Scholar
  14. Lively, C. M., 2001. Trematode infection and the distribution and dynamics of parthenogenetic snail populations. Parasitology 123: 19–26.Google Scholar
  15. Lively, C. M. & J. Jokela, 2002. Temporal and spatial distributions of parasites and sex in a freshwater snail. Evol. Ecol. Res. 4: 219–226.Google Scholar
  16. Lucas, A., 1965. Progrès récents en Europe d’une espèce envahissante: Hydrobia jenkinsi (Smith), Mollusque, Gastéropode. PhD thesis, Brest University, France: 42 pp.Google Scholar
  17. Machin, J., 1975.Water relationships. In V. Fretter & J. Peake (eds), Pulmonates 1. Academic Press, London: 105–163.Google Scholar
  18. Marazanof, F., 1969. Contribution à l’étude écologique des Mollusques des eaux douces et saumâtres de Camargue. Tome I: Milieux–espèces. Ann. Limnol. 5: 201–323.Google Scholar
  19. Ponder, W. F., 1988. Potamopyrgus antipodarum a molluscan coloniser of Europe and Australia. J. moll. Stud. 54: 271–285.Google Scholar
  20. Robson, G. C., 1923. Parthenogenesis in the mollusc Palusdestrina jenkinsi. J. exp. Biol. 1: 65–77.Google Scholar
  21. Siegismund, H. & J. Hylleberg, 1987. Dispersal–mediated coexistence of mud snails (Hydrobiidae) in an estuary. Mar. Biol. 94: 395–402.Google Scholar
  22. Thompson, S. N., 1985. Review: metabolic integration during the host associations of multicellular animal endoparasites. Comp. Biochem. Physiol. 81: 21–42.Google Scholar
  23. Todd, M. E., 1964. Osmotic balance in Hydrobia ulvae and Potamopyrgus jenkinsi (Gastropoda: Hydrobiidae). J. exp. Biol. 41: 665–667.Google Scholar
  24. Wallace, C., 1979. Notes of the occurrence of males in populations of Potamopyrgus jenkinsi. J. moll. Stud. 45: 61–67.Google Scholar
  25. Winterbourn, M. J., 1973. The New Zealand species of Potamopyrgus (Gastropoda: Hydrobiidae). Malacologia 10: 283–321.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Claudia Gérard
    • 1
  • Alexia Blanc
    • 1
  • Katherine Costil
    • 2
  1. 1.UMR Ecobio 6553, Equipe de Physiologie et EcophysiologieUniversité de Rennes I, Campus de BeaulieuRennes CedexFrance
  2. 2.Laboratoire de Biologie et Biotechnologies MarinesUniversité de Caen, Esplanade de la paixCaen CedexFrance

Personalised recommendations