Skip to main content
Log in

Molecular characterization of a nuclear topoisomerase II from Nicotiana tabacum that functionally complements a temperature-sensitive topoisomerase II yeast mutant

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We have successfully expressed enzymatically active plant topoisomerase II in Escherichia coli for the first time, which has enabled its biochemical characterization. Using a PCR-based strategy, we obtained a full-length cDNA and the corresponding genomic clone of tobacco topoisomerase II. The genomic clone has 18 exons interrupted by 17 introns. Most of the 5′ and 3′ splice junctions follow the typical canonical consensus dinucleotide sequence GU-AG present in other plant introns. The position of introns and phasing with respect to primary amino acid sequence in tobacco TopII and Arabidopsis TopII are highly conserved, suggesting that the two genes are evolved from the common ancestral type II topoisomerase gene. The cDNA encodes a polypeptide of 1482 amino acids. The primary amino acid sequence shows a striking sequence similarity, preserving all the structural domains that are conserved among eukaryotic type II topoisomerases in an identical spatial order. We have expressed the full-length polypeptide in E. coli and purified the recombinant protein to homogeneity. The full-length polypeptide relaxed supercoiled DNA and decatenated the catenated DNA in a Mg2+- and ATP-dependent manner, and this activity was inhibited by 4′-(9-acridinylamino)-3′-methoxymethanesulfonanilide (m-AMSA). The immunofluorescence and confocal microscopic studies, with antibodies developed against the N-terminal region of tobacco recombinant topoisomerase II, established the nuclear localization of topoisomerase II in tobacco BY2 cells. The regulated expression of tobacco topoisomerase II gene under the GAL1 promoter functionally complemented a temperature-sensitive TopII ts yeast mutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi, N., Miyaike, M., Kato, S., Kanamaru, R., Koyama, H. and Kikuchi, A. 1997b. Cellular distribution of mammalian DNA topoisomerase II is determined by its catalytically dispensable C-terminal domain. Nucl. Acids Res. 25: 3135-3142.

    Google Scholar 

  • Austin, C.A. and Marsh, K.L. 1998. Eukaryotic DNA topoisomerase II beta. Bioessays 20: 215-226.

    Google Scholar 

  • Berger, J.M., Gamblin, S.J., Harrison, S.C. and Wang, J.C. 1996. Structure and mechanism of DNA topoisomerase II. Nature 379: 225-232.

    Google Scholar 

  • Brown, J.W. 1986. A catalogue of splice junction and putative branch point sequences from plant introns. Nucl. Acids Res. 14: 9549-9559.

    Google Scholar 

  • Burden, D.A. and Osheroff, N. 1998. Mechanism of action of eukaryotic topoisomerase II and drugs targeted to the enzyme. Biochim. Biophys. Acta 1400: 139-154.

    Google Scholar 

  • Burge, C. and Karlin, S. 1997. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268: 78-94.

    Google Scholar 

  • Carballo, M., Gine, R., Santos, M. and Puigdomènech, P. 1991. Characterization of topoisomerase I and II activities in nuclear extracts during callogenesis in immature embryos of Zea mays. Plant Mol. Biol. 16: 59-70.

    Google Scholar 

  • Carbonera, D., Rovati, L., Guano, F. and Balestrazzi, A. 1995. Puri-fication and properties of DNA topoisomerase II from Daucus carota cells. J. Exp. Bot. 46: 347-354.

    Google Scholar 

  • Caron, P.R. and Wang, J.C. 1994. Appendix. II: Alignment of primary sequences of DNA topoisomerases. Adv. Pharmacol. 29B: 271-297.

    Google Scholar 

  • Caron, P.R., Watt, P. and Wang, J.C. 1994. The C-terminal domain of Saccharomyces cerevisiae DNA topoisomerase II. Mol. Cell. Biol. 14: 3197-3207.

    Google Scholar 

  • Champoux J.J 1990. Mechanistic aspects of type I topoisomerases. In: N.R. Cozzarelli and J.C. Wang (Eds.) DNA Topology and its Biological Effects, Cold Spring Harbor Laboratory Press, Plainview, NY, pp. 217-242.

    Google Scholar 

  • Champoux, J.J. 2001. DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70: 369-413.

    Google Scholar 

  • Chiatante, D., Claut V. and Bryant, J.A. 1993. Nuclear DNA topoisomerases in Pisum sativum L. J. Exp. Bot. 44: 1045-1051.

    Google Scholar 

  • Cowell, I.G., Willmore, E., Chalton, D., Marsh, K.L., Jazrawi, E., Fisher, L.M. and Austin, C.A. 1998. Nuclear distribution of human DNA topoisomerase IIbeta: a nuclear targeting signal resides in the 116-residue C-terminal tail. Exp. Cell. Res. 243: 232-240.

    Google Scholar 

  • Crenshaw, D.G. and Hsieh, T. 1993. Function of the hydrophilic carboxyl terminus of type II DNA topoisomerase from Drosophila melanogaster. II. In vivo studies. J. Biol. Chem. 268: 21335-21343.

    Google Scholar 

  • DiNardo, S., Voelkel, K. and Sternglanz, R. 1984. DNA topoisomerase II mutant of Saccharomyces cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc. Natl. Acad. Sci. USA 81: 2616-2620.

    Google Scholar 

  • Dingwall, C. and Laskey, R.A. 1991. Nuclear targeting sequences: a consensus? Trends Biochem. Sci. 16: 478-481.

    Google Scholar 

  • Falquet, L., Pagni, M., Bucher, P., Hulo, N., Sigrist, C.J., Hofmann, K. and Bairoch, A. 2002. The PROSITE database, its status in 2002. Nucl. Acids Res. 30: 235-238.

    Google Scholar 

  • Fukata, H. and Fukasawa, H. 1982. Isolation and partial characterization of two distinct DNA topoisomerases from cauliflower inflorescence. J. Biochem. (Tokyo) 91: 1337-1342.

    Google Scholar 

  • Fukata, H., Ohgami, K.L. and Fukasawa, H. 1986. Isolation and characterization of DNA topoisomerase II from cauliflower inflorescences. Plant. Mol. Biol. 6: 137-144.

    Google Scholar 

  • Giaever, G., Lynn, R., Goto, T. and Wang, J.C. 1986. The complete nucleotide sequence of the structural gene TOP2 of yeast DNA topoisomerase II. J. Biol. Chem. 261: 12448-12454.

    Google Scholar 

  • Goto, T. and Wang, J.C. 1984. Yeast DNA topoisomerase II is encoded by a single-copy, essential gene. Cell 36: 1073-1080.

    Google Scholar 

  • Grelon, M., Vezon, D., Gendrot, G. and Pelletier, G. 2001. AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J. 20: 589-600.

    Google Scholar 

  • Hartung, F. and Puchta, H. 2000. Molecular characterisation of two paralogous SPO11 homologues in Arabidopsis thaliana. Nucl. Acids Res. 28: 1548-1554.

    Google Scholar 

  • Hartung, F. and Puchta, H. 2001. Molecular characterization of homologues of both subunits A (SPO11) and B of the archaebacterial topoisomerase 6 in plants. Gene 271: 81-86.

    Google Scholar 

  • Hartung, F., Angelis, K.J., Meister, A., Schubert, I., Melzer, M. and Puchta, H. 2002. An archaebacterial topoisomerase homolog not present in other eukaryotes is indispensable for cell proliferation of plants. Curr. Biol. 12: 1787-1791.

    Google Scholar 

  • Holm, C., Stearns, T. and Botstein, D. 1989. DNA topoisomerase II must act at mitosis to prevent non-disjunction and chromosome breakage. Mol. Cell. Biol. 9: 159-168.

    Google Scholar 

  • Hsieh T.S. 1990. Mechanistic aspects of type II topoisomerases. In: N.R. Cozzarelli and J.C.Wang (Eds.) DNA Topology and its Biological Effects, Cold Spring Harbor Laboratory Press, Plainview, NY, pp. 243-263.

    Google Scholar 

  • Lam, E. and Chua, N.H. 1987. Chloroplast DNA gyrase and in vitro regulation of transcription by template topology and novobiocin. Plant Mol. Biol. 8: 415-424.

    Google Scholar 

  • Lang, A.J., Mirski, S.E., Cummings, H.J., Yu, Q., Gerlach, J.H. and Cole, S.P. 1998. Structural organization of the human TOP2A and TOP2B genes. Gene 221: 255-266.

    Google Scholar 

  • Lynn, R., Giaever, G., Swanberg, S.L. and Wang, J.C. 1986. Tandem regions of yeast DNA topoisomerase II share homology with different subunits of bacterial gyrase. Science 233: 647-649.

    Google Scholar 

  • Marrison, J. L. and Leech, R.M. 1992. Co-immunolocalization of topoisomerase II and chloroplast DNA in developing, dividing and mature wheat chloroplasts. Plant J. 2: 783-790.

    Google Scholar 

  • Petruti-Mot, A.S. and Earnshaw, W.C. 2000. Two differentially spliced forms of topoisomerase II? and ? mRNAs are conserved between birds and humans. Gene 258: 183-192.

    Google Scholar 

  • Pringle, J.R., Adams, A.E., Drubin, D.G. and Haarer, B.K. 1991. Immunofluorescence methods for yeast. Meth. Enzymol. 194: 565-602.

    Google Scholar 

  • Proust, J., Houlne, G., Schantz, M.L., Shen, W.H. and Schantz, R. 1999. Regulation of biosynthesis and cellular localization of Sp32 annexins in tobacco BY2 cells. Plant Mol. Biol. 39: 361-372.

    Google Scholar 

  • Pyke, K. A., Marrison, J. and Leech, R.M. 1989. Evidence for a type II topoisomerase in wheat chloroplasts. FEBS Lett. 242: 305-308.

    Google Scholar 

  • Reddy, M.K., Nair, S. and Tewari, K.K. 1998. Cloning, expression and characterization of a gene which encodes a topoisomerase I with positive supercoiling activity in pea. Plant Mol. Biol. 37: 773-784.

    Google Scholar 

  • Reddy, M.K., Nair, S., Tewari, K.K., Mudgil, Y., Yadav, B.S. and Sopory, S.K. 1999. Cloning and characterization of a cDNA encoding topoisomerase II in pea and analysis of its expression in relation to cell proliferation. Plant Mol. Biol. 41: 125-137.

    Google Scholar 

  • Rudenko, G.N. 1992. Plant DNA-topoisomerase type-II: isolation, characterization and properties. Molekulyarnaya Biol. 25: 1125-1135.

    Google Scholar 

  • Sugimoto-Shirasu, K., Stacey, N.J., Corsar, J., Roberts, K. and McCann, M.C. 2002. DNA topoisomerase VI is essential for endoreduplication in Arabidopsis. Curr. Biol. 12: 1782-1786.

    Google Scholar 

  • Trigueros, S. and Roca, J. 2002. A GyrB-GyrA fusion protein expressed in yeast cells is able to remove DNA supercoils but cannot substitute eukaryotic topoisomerase II. Genes Cells 7: 249-257.

    Google Scholar 

  • Wang, J.C. 1996. DNA topoisomerases. Annu. Rev. Biochem. 65: 635-692.

    Google Scholar 

  • Wang, J.C. 2002. Cellular roles of DNA topoisomerases: a molecular perspective. Natl. Rev. Mol. Cell. Biol. 3: 430-440.

    Google Scholar 

  • Wyckoff, E., Natalie, D., Nolan, J.M., Lee, M. and Hsieh, T. 1989. Structure of the Drosophila DNA topoisomerase II gene. Nucleotide sequence and homology among topoisomerases II. J. Mol. Biol. 205: 1-13.

    Google Scholar 

  • Xie, S., and Lam, E. 1994. Abundance of nuclear DNA topoisomerase II is correlated with proliferation in Arabidopsis thaliana. Nucl. Acids Res. 22: 5729-5736.

    Google Scholar 

  • Yin, Y., Cheong, H., Friedrichsen, D., Zhao, Y., Hu, J., Mora-Garcia, S. and Chory, J. 2002. A crucial role for the putative Arabidopsis topoisomerase VI in plant growth and development. Proc. Natl. Acad. Sci. USA 99: 10191-10196.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.K. Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, B., Mudgil, Y., Sopory, S. et al. Molecular characterization of a nuclear topoisomerase II from Nicotiana tabacum that functionally complements a temperature-sensitive topoisomerase II yeast mutant. Plant Mol Biol 52, 1063–1076 (2003). https://doi.org/10.1023/A:1025427700337

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025427700337

Navigation