Skip to main content
Log in

Hydrodynamical impact on biogeochemical processes in aquatic sediments

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Boundary layer flow characteristics and sediment permeability control pathways and magnitude of material exchange in the surface layer of aquatic sediments. In fine-grained cohesive beds, bottom currents and sediment microtopography shape the diffusive boundary layer and locally produce areas where the interfacial solute fluxes are increased or reduced. Where sediment permeabilities exceed 10−12 m2, advective pore water flows driven by boundary flow–topography interaction dominate the sediment–water exchange of matter, with transport rates that exceed those of molecular diffusion by two orders of magnitude and more. The curved paths of the advective pore flows through the surface layers of such sandy beds generate complex three-dimensional biogeochemical patterns with extreme spatial and temporal variability ranging from millimeters to decimeters and seconds to seasons. High filtration rates, a bacterial community firmly attached to the mineral grains, rapidly changing biogeochemical zonations and winnowing of the sediment surface layers by frequent resuspension convert these beds into effective biocatalytical filter systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aller, R., 1994. Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chem. Geol. 114: 331-345.

    Google Scholar 

  • Aller, R. C., 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water. In McCall, P. L. & M. J. S. Tevesz (eds),Animal-Sediment Relations. Plenum Press, New York: 53-96.

    Google Scholar 

  • Andersen, F. & W. Helder, 1987. Comparison of oxygen microgradients, oxygen flux rates and electron transport system activity in coastal marine sediments. Mar. Ecol. Progr. Ser.37: 59-264.

    Google Scholar 

  • Berner, R. A., 1976. The benthic boundary layer from the viewpoint of a geochemist. In McCave, I. N. (ed.), The Benthic Boundary Layer. Plenum Press, New York: 33-55.

    Google Scholar 

  • Berner, R. A., 1980. Early Diagenesis-A Theoretical Approach. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Berninger, U. G. & M. Huettel, 1997. Impact of flow on oxygen dynamics in photosynthetically active sediments. Aquat. Microbial Ecol. 12(3): 291-302.

    Google Scholar 

  • Canfield, D. E., B. B. Jørgensen, H. Fossing, R. Glud, J. Gundersen, N. B. Ramsing, B. Thamdrup, J. W. Hansen, L. P. Nielsen & P. O. J. Hall, 1993. Pathways of organic carbon oxidation in three continental margin sediments. Mar. Geol. 113: 27-40.

    Google Scholar 

  • Golosov, S. D. & N. V. Ignatieva, 1999. Hydrothermodynamic features of mass exchange across the sediment-water interface in shallow lakes. Hydrobiologia 409: 153-157.

    Google Scholar 

  • Huettel, M. & G. Gust, 1992. Impact of bioroughness on interfacial solute exchange in permeable sediments. Mar. Ecol. Progr. Ser. 89(23): 253-267.

    Google Scholar 

  • Huettel, M. & A. Rusch, 2000. Transport and degradation of phytoplankton in permeable sediment. Limnol. Oceanogr. 45(3): 534-549.

    Google Scholar 

  • Huettel, M., W. Ziebis & S. Forster, 1996. Flow-induced uptake of particulate matter in permeable sediments. Limnol. Oceanogr. 41(2): 309-322.

    Google Scholar 

  • Huettel, M., W. Ziebis, S. Forster & G. W. Luther, 1998. Advective transport affecting metal and nutrient distributions and interfacial fluxes in permeable sediments. Geochim. Cosmochim. Acta 62(4): 613-631.

    Google Scholar 

  • Ignatieva, N. V., 1996. Distribution and release of sedimentary phosphorus in Lake Ladoga. Hydrobiologia 322(13): 129-136.

    Google Scholar 

  • Jørgensen, B. B., 1994. Diffusion processes and boundary layers in microbial mats. In Stal, L. J. & P. Caumette (eds), Microbial Mats, Vol. 35, Springer, Berlin Heidelberg. NATO ASI Series: 243-253.

  • Jørgensen, B. B. & D. J. Des Marais, 1990. The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat. Limnol. Oceanogr. 35(6): 1343-1355.

    Google Scholar 

  • Li, M. Z. & C. L. Amos, 1999. Field observations of bedforms and sediment transport thresholds of fine sand under combined waves and currents. Mar. Geol. 158(1-4): 147-160.

    Google Scholar 

  • Lohse, L., E. H. G. Epping, W. Helder & W. Vanraaphorst, 1996. Oxygen pore water profiles in continental shelf sediments of the North Sea - turbulent versus molecular diffusion. Mar. Ecol. Progr. Ser. 145(1-3): 63-75.

    Google Scholar 

  • Migne, A. & D. Davoult, 1998. Macrobenthic metabolism as carbon and nitrogen fluxes in a coastal area exposed to strong tidal currents (Dover Strait, Eastern English Channel). Hydrobiologia 376: 307-315.

    Google Scholar 

  • Pilditch, C. A., C. W. Emerson & J. Grant, 1998. Effect of scallop shells and sediment grain size on phytoplankton flux to the bed. Cont. Shelf Res. 17(15): 1869-1885.

    Google Scholar 

  • Røy, H., M. Huttel & B. B. Jorgensen, 2002. The role of smallscale sediment topography for oxygen flux across the diffusive boundary layer. Limnol. Oceanogr. 47(3): 837-847.

    Google Scholar 

  • Rusch, A., S. Forster & M. Huettel, 2001. Bacteria, diatoms and detritus in an intertidal sandflat subject to advective transport across the water-sediment interface. Biogeochemistry 55(1): 1-27.

    Google Scholar 

  • Savant, S. A., D. D. Reible & L. J. Thibodeaux, 1987. Convective transport within stable river sediments. Water Resour. Res. 23: 1763-1768.

    Google Scholar 

  • Shum, K. T. & B. Sundby, 1996. Organic matter processing in continental shelf sediments - the subtidal pump revisited. Mar. Chem. 53(12): 81-87.

    Google Scholar 

  • Thibodeaux, L. J. & J. D. Boyle, 1987. Bedform-generated convective transport in bottom sediment. Nature 325: 341-343.

    Google Scholar 

  • Vanrees, K. C. J., K. R. Reddy & P. S. C. Rao, 1996. Influence of benthic organisms on solute transport in lake sediments. Hydrobiologia 317(1): 31-40.

    Google Scholar 

  • Vaughn, C. C. & C. C. Hakenkamp, 2001. The functional role of burrowing bivalves in freshwater ecosystems [Review]. Freshwater Biol. 46(11): 1431-1446.

    Google Scholar 

  • Villar, C., L de Cabo, P. Vaithiyanathan & C. Bonetto, 1999. Pore water N and P concentration in a floodplain marsh of the Lower Parana River. Hydrobiologia 392(1): 65-71.

    Google Scholar 

  • Wainright, S. C., C. A. Couch & J. L. Meyer, 1992. Fluxes of bacteria and organic matter into a Blackwater river from river sediments and floodplain soils. Freshwater Biol. 28(1): 37-48

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huettel, M., Røy, H., Precht, E. et al. Hydrodynamical impact on biogeochemical processes in aquatic sediments. Hydrobiologia 494, 231–236 (2003). https://doi.org/10.1023/A:1025426601773

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025426601773

Navigation