Skip to main content
Log in

Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The rice OsMADS16 gene is phylogenetically related to the angiosperm B-function MADS-box genes. To investigate if OsMADS16 functions as an AP3/DEF orthologue to regulate the development of lodicules and stamens in rice, we isolated its genomic sequences and characterized its functions in planta by RNA interference. The genomic sequence of the OsMADS16 gene shows that it shares high similarity in genomic structure and the deduced amino acid sequence with the maize B-class gene, Si1. Transgenic lines from the introduced gene expressing double-stranded RNA with the OsMADS16 cDNA fragment were male-sterile and displayed alternations of lodicules and stamens, occasionally depressed palea and overgrown glume. The two lodicules were converted into four palea/lemma-like organs and some stamens into carpels. Further investigations of the transcription of OsMADS16 gene in these transgenic lines by RT-PCR revealed that its transcript was significantly reduced. Transcription of a rice PI homologous gene, OsMADS4, was also reduced remarkably in the transgenic plants. Our results demonstrate that OsMADS16 is an AP3/DEF orthologue to specify the identities of lodicules and stamens in rice flower and also support that OsMADS4 is a PI orthologue. In addition, these results suggest that RNA interference is a useful tool for functional genomics in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrose, B.A., Lerner, D.R., Ciceri, P., Padilla, C.M., Yanofsky, M.F. and Schmidt, R.J. 2000. Molecular and genetic analysis of the Silkyl gene reveal conservation in floral organ specification between eudicots and monocots. Mol. Cell. 5: 569–579.

    Google Scholar 

  • Bowman, J.L., Smyth, D.R. and Meyerowitz, E.M. 1991. Genetic interactions among floral homeotic genes of Arabidopsis. Development 112: 1–20.

    Google Scholar 

  • Celotto, A.M. and Graveley, B.R. 2002. Exon-specific RNAi: a tool for dissecting the functional relevance of alternative splicing. RNA 8: 718–724.

    Google Scholar 

  • Chen, L., Marmey, P., Taylor, N.J., Brizard, J.P., Espinoza, C., D'Cruz, P., Huet, H., Zhang, S., de Kochko, A., Beachy, R.N. and Fauquet, C.M. 1998. Expression and inheritance of multiple transgenes in rice plants. Nature Biotechnol. 16(11): 1060–1064.

    Google Scholar 

  • Chuang, C.F. and Meyerowitz, E.M. 2000. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 97: 4985–4990.

    Google Scholar 

  • Chung, Y.Y., Kim, S.R., Kang, H.G., Noh, Y.S., Park, M.C., Finkel, D. and An, G. 1995. Characterization of two rice MADS box genes homologous to GLOBOSA. Plant Sci., 109: 45–56.

    Google Scholar 

  • Coen, E.S. and Meyerowitz, E.M. 1991. The war of the whorls: genetic interaction controlling flower development. Nature, 353: 31–37.

    Google Scholar 

  • Dalmay, T., Hamilton, A., Rudd, S., Angell, S. and Baulcombe, D.C. 2000. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101: 543–553.

    Google Scholar 

  • Fire, A. 1999. RNA-triggered gene silencing. Trends Genet. 15: 358–363.

    Google Scholar 

  • Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. and Mello, C.C. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806–811.

    Google Scholar 

  • Fraser, A.G., Kamath, R.S., Zipperlen, P., Martinez-Campos, M., Sohrmann, M. and Ahringer, J. 2000. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408: 325–330.

    Google Scholar 

  • Gonczy, P., Echeverri, C., Oegema, K., Coulson, A., Jones, S.J., Copley, R.R., Duperon, J., Oegema, J., Brehm, M., Cassin, E., Hannak, E., Kirkham, M., Pichler, S., Flohrs, K., Goessen, A., Leidel, S., Alleaume, A.M., Martin, C., Ozlu, N., Bork, P. and Hyman, A.A. 2000. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408: 331–336.

    Google Scholar 

  • Goto, K. and Meyerowitz, E.M. 1994. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev., 8: 1548–1560.

    Google Scholar 

  • Hamilton, A.J. and Baulcombe, D.C. 1999. A novel species of small antisense RNA in post-transcriptional gene silencing. Science, 286: 950–952.

    Google Scholar 

  • Hannon, G.J. 2002. RNA interference. Nature 418: 244–251.

    Google Scholar 

  • Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6: 271–282.

    Google Scholar 

  • Honma, T. and Goto, K. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525–529.

    Google Scholar 

  • Hunter, C.P. 1999. Genetics: a touch of elegance with RNAi. Curr. Biol. 9: R440–R442.

    Google Scholar 

  • Hutvagner, G. and Zamore, P.D. 2002. RNAi: nature abhors a double-strand. Curr. Opin. Genet. Dev. 12: 225–232.

    Google Scholar 

  • Jack, T., Brochman, L.L. and Meyerowitz, E.M. 1992. The homeotic gene APETALA 3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell, 68: 683–697.

    Google Scholar 

  • Jack, T., Fox, G.L. and Meyerowitz, E.M. 1994. Arabidopsis homeotic gene APETALA 3 ectopic expression: transcriptional and posttranscriptional regulation determines floral organ identity. Cell, 76: 703–716.

    Google Scholar 

  • Jones, D., Crowe, E., Stevens, T.A. and Candido, E.P. 2002. Functional and phylogenetic analysis of the ubiquitination system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol. 3: RESEARCH0002.

  • Kang, H.G., Noh, Y.S., Chung, Y.Y., Costa, M.A., An, K. and An, G. 1995. Phenotypic alterations of petal and sepal by ectopic expression of a rice MADS box gene in tobacco. Plant Mol. Biol. 29: 1–10.

    Google Scholar 

  • Kang, H.G., Jeon, J.S., Lee, S. and An, G. 1998. Identification of class B and class C floral organ identity genes from rice plants. Plant Mol. Biol. 38: 1021–1029.

    Google Scholar 

  • Kennerdell, J.R. and Carthew, R.W. 1998. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95: 1017–1026.

    Google Scholar 

  • Krizek, B.A. and Meyerowitz, E.M. 1996. The Arabidopsis homeotic genes APETALA 3 and PISTALLATA are sufficient to provide the B class organ identity function. Development 122: 11–22.

    Google Scholar 

  • Kyozuka, J., Kobayashi, T., Morita, M. and Shimamoto, K. 2000. Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol. 41: 710–718.

    Google Scholar 

  • Kyozuka, J. and Shimamoto, K. 2002. Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants. Plant Cell Physiol. 43: 130–135.

    Google Scholar 

  • Lohmann, J.U., Endl, I. and Bosch, T.C. 1999. Silencing of developmental genes in Hydra. Dev. Biol. 214: 211–214.

    Google Scholar 

  • Moon, Y.H., Jung, J.Y., Kang, H.G. and An, G. 1999. Identification of a rice APETALA 3 homologue by yeast two-hybrid screening. Plant Mol. Biol. 40: 167–177.

    Google Scholar 

  • Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. and Yanofsky, M.F. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200–203.

    Google Scholar 

  • Pelaz, S., Tapia-Lopez, R., Alvarez-Buylla, E.R. and Yanofsky, M.F. 2001. Conversion of leaves into petals in Arabidopsis. Curr. Biol. 11: 182–184.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Plainview, NY.

    Google Scholar 

  • Shi, H., Djikeng, A., Mark, T., Wirtz, E., Tschudi, C. and Ullu, E. 2000. Genetic interference in Trypanosoma brucei by heritable and inducible double-stranded RNA. RNA 6: 1069–1076.

    Google Scholar 

  • Shinozuka, Y., Kojima, S., Shomura, A., Ichimura, H., Yano, M., Yamamoto, K. and Sasaki, T. 1999. Isolation and characterization of rice MADS box gene homologues and their RLFP mapping. DNA Res. 6: 123–129.

    Google Scholar 

  • Theissen, G. 2001. Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4: 75–85.

    Google Scholar 

  • Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Munster, T., Winter, K.U. and Saedler, H. 2000. A short history of MADS-box genes in plants. Plant Mol. Biol. 42: 115–149.

    Google Scholar 

  • Wang, M.B. and Waterhouse, P.M. 2002. Application of gene silencing in plants. Curr. Opin. Plant Biol. 5: 146–150.

    Google Scholar 

  • Wang, W., Zhai, W., Luo, M., Jiang, G., Chen, X., Li, X., Wing, R.A. and Zhu, L. 2001. Chromosome landing at the bacterial blight resistance gene Xa4 locus using a deep coverage rice BAC library. Mol. Genet. Genomics 265: 118–125.

    Google Scholar 

  • Waterhouse, P.M., Graham, M.W. and Wang, M.B. 1998. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. USA 95: 13959–13964.

    Google Scholar 

  • Weigel, D. and Meyerowitz, E.M. 1994. The ABCs of floral homeotic genes. Cell 78: 203–209.

    Google Scholar 

  • Wianny, F. and Zernicka-Goetz, M. 2000. Specific interference with gene function by double-stranded RNA in early mouse development. Nature Cell Biol. 2: 70–75.

    Google Scholar 

  • Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A. and Meyerowitz, E.M. 1990. The protein encoded by the Arabidopsis floral homeotic agamous resembles transcription factor. Nature 346: 35–39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihuang Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, H., Wang, Y., Liu, D. et al. Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference. Plant Mol Biol 52, 957–966 (2003). https://doi.org/10.1023/A:1025401611354

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025401611354

Navigation