Skip to main content
Log in

Genetic Analysis of Pleiotropic Effects of pho85 Mutations in Yeast Saccharomyces cerevisiae

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The cyclin-dependent phosphoprotein kinase Pho85p is involved in the regulation of metabolism and cell cycle in the yeast Saccharomyces cerevisiae. It is known that mutations in the PHO85gene lead to constitutive synthesis of Pho5p acidic phosphatase, a delay in cell growth on media containing nonfermentable carbon sources, sensitivity to high temperature, and other phenotypic effects. A lack of growth at 37°C and on a medium with alcohol as the carbon source was shown to be associated with the rapid accumulation of nuclear ts and mitochondrial [rho ] mutations occurring in the background of gene PHO85 inactivation. Thus, Pho85p seems to play an important role in the maintenance of yeast genome stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hunter, T. and Plowman, G.D., The Protein Kinases of Budding Yeast: Six Score and More, Trends Biochem. Sci., 1997, vol. 22, pp. 18-22.

    Google Scholar 

  2. Morgan, D.O., The Dynamics of Cyclin-Dependent Kinase Structure, Curr. Opin. Cell. Biol., 1996, vol. 8, pp. 767-772.

    Google Scholar 

  3. Measday, V., Moore, L., Retnakaran, R., et al., A Family of Cyclin-like Proteins That Interact with the PHO85 Cyclin-Dependent Kinase, Mol. Cell. Biol., 1997, vol. 17, pp. 1212-1223.

    Google Scholar 

  4. Kaffman, A., Herskowitz, I., Tjian, R., and O'Shea, E.K., Phosphorylation of the Transcription Factor PHO4 by a Cyclin-CDK Complex, PHO80-PHO85, Science, 1994, vol. 263, pp. 1153-1156.

    Google Scholar 

  5. Nishizawa, M., Kawasumi, M., Fujino, M., and Toh-E, A., Phosphorylation of sic1, a Cyclin-Dependent Kinase (Cdk) Inhibitor, by Cdk Including Pho85 Kinase Is Required for Its Prompt Degradation, Mol. Biol. Cell, 1998, vol. 9, pp. 2393-2405.

    Google Scholar 

  6. Colwill, K., Field, D., Moore, L., et al., In vivo Analysis of the Domains of Yeast Rvs167p Suggests Rvs167p Function Is Mediated through Multiple Protein Interactions, Genetics, 1999, vol. 152, pp. 881-893.

    Google Scholar 

  7. Samsonova, M.G., Padkina, M.V., Krasnopevtseva, N.G., et al., A Genetic Biochemical Study of Acid Phosphatases of Yeast Saccharomyces cerevisiae: V. The Genetic Control of Synthesis of Acid Phosphatase II, Genetika (Moscow), 1975, vol. 11, no. 9, pp. 104-115.

    Google Scholar 

  8. Santos, R.C., Waters, N.C., Creasy, C.L., and Bergman, L.W., Structure-Function Relationships of the Yeast Cyclin-Dependent Kinase Pho85, Mol. Cell. Biol., 1995, vol. 15, pp. 5482-5491.

    Google Scholar 

  9. Nishizawa, M., Kanaya, Y., and Toh-E, A., Mouse Cyclin-Dependent Kinase (Cdk) 5 Is a Functional Homologue of a Yeast Cdk, Pho85 Kinase, J. Biol. Chem., 1999, vol. 274, pp. 33 859-33 862.

    Google Scholar 

  10. Timblin, B.K., Tatchell, K., and Bergman, L.W., Deletion of the Gene Encoding the Cyclin-Dependent Protein Kinase Pho85 Alters Glycogen Metabolism in Saccharomyces cerevisiae, Genetics, 1996, vol. 143, pp. 57-66.

    Google Scholar 

  11. Wickert, S., Fink, M., Herz, B., and Ernst, J.F., A Small Protein (Ags1p) and the Pho80p-Pho85p Kinase Complex Contribute to Aminoglycoside Antibiotic Resistance of the Yeast Saccharomyces cerevisiae, J. Bacteriol., 1998, vol. 180, pp. 1887-1894.

    Google Scholar 

  12. Popova, Yu.G., Padkina, M.V., and Sambuk, E.V., Effect of Mutations in the PHO85 and PHO4 Genes on Proline Utilization in Yeast Saccharomyces cerevisiae, Genetika (Moscow), 2000, vol. 36, no. 12, pp. 1622-1628.

    Google Scholar 

  13. Sambuk, E.V., Kuchkartaev, A.I., Padkina, M.V., and Smirnov, M.N., Mapping of Genes Regulating Acid Phosphatase Synthesis in Peterhof Genetic Lines of Yeast Saccharomyces cerevisiae, Genetika (Moscow), 1991, vol. 27, no. 4, pp. 644-648.

    Google Scholar 

  14. Ogawa, N., De Risi, J., and Brown, P.O., New Components of a System for Phosphate Accumulation and Polyphosphate Metabolism in Saccharomyces cerevisiae Revealed by Genomic Expression Analysis, Mol. Cell. Biol., 2000, vol. 11, pp. 4309-4321.

    Google Scholar 

  15. Szent-Gyorgyi, C., A Bipartite Operator Interacts with a Heat Shock Element to Mediate Early Meiotic Induction of Saccharomyces cerevisiae HSP82, Mol. Cell. Biol., 1995, vol. 15, pp. 6754-6769.

    Google Scholar 

  16. Sambuk, E.V., A Study of the Regulation of Phosphatase Synthesis in Yeast Saccharomyces cerevisiae, Cand. Sci. (Biol.) Dissertation, Leningrad: Leningr. Gos. Univ., 1985.

    Google Scholar 

  17. Popova, J.G. and Sambuk, E.V., Phosphate Level Regulates the HSP82 Gene Expression, X Int. Symp. on Yeast, 2000, p. 361.

  18. Zakharov, I.A., Kozhin, S.A., et al., Sbornik metodik po genetike drozhzhei-sakharomitsetov (Methods of the Genetics of Saccharomycetes), Leningrad: Nauka, 1984.

    Google Scholar 

  19. Evans, I.H., Yeast Protocols, in Methods in Cell and Molecular Biology, New York: Humana, 1996.

    Google Scholar 

  20. Urbakh, V.Yu., Biometricheskie metody (Biometric Methods), Moscow: Nauka, 1964.

    Google Scholar 

  21. Morrison, A. and Sugino, A., The 3' → 5' Exonucleases of Both DNA Polymerases ??and ??Participate in Correcting Errors of DNA Replication in Saccharomyces cerevisiae, Mol. Gen. Genet., 1994, vol. 242, pp. 289-296.

    Google Scholar 

  22. Foury, F., Cloning and Sequencing of the Nuclear Gene MIP1 Encoding the Catalytic Subunit of the Yeast Mitochondrial DNA Polymerase, J. Biol. Chem., 1989, vol. 264, pp. 20 552-20 560.

    Google Scholar 

  23. Vanderstraeten, S., Van den Brule, S., Hu, J., and Foury, F., The Role of the 3' → 5' Exonucleolytic Proofreading and Mismatch Repair in Yeast Mitochondrial DNA Error Avoidance, J. Biol. Chem., 1998, vol. 274, pp. 23 690-23 697.

    Google Scholar 

  24. Zuo, X.M., Clark-Walker, G.D., and Chen, X.J., The Mitochondrial Nucleoid Protein, Mgm101p, of Saccharomyces cerevisiae Is Involved in the Maintenance of rho + and ori/rep-Devoid Petite Genomes but Is Not Required for Hypersuppressive rho - mtDNA, Genetics, 2002, vol. 160, pp. 1389-1400.

    Google Scholar 

  25. Lahaye, A., Stahl, H., Thines-Sempoux, D., and Foury, F., PIF1: A DNA Helicase in Yeast Mitochondria, EMBO J., 1991, vol. 10, pp. 997-1007.

    Google Scholar 

  26. Datta, A. and Jinks-Robertson, S., Association of Increased Spontaneous Mutation Rates with High Levels of Transcription in Yeast, Science, 1995, vol. 268, pp. 1616-1619.

    Google Scholar 

  27. Carroll, A.S., Bishop, A.C., DeRisi, J.L., et al., Chemical Inhibition of the Pho85 Cyclin-Dependent Kinase Reveals a Role in the Environmental Stress Response, Proc. Natl. Acad. Sci. USA, vol. 98, pp. 12 578-12 583.

  28. Gray, N.S., Wodicka, L., Thunnissen, A., et al., Exploiting Chemical Libraries, Structure, and Genomics in the Search for Kinase Inhibitors, Science, 1998, vol. 281, pp. 533-538.

    Google Scholar 

  29. Vel'kov, V.V., New Insights into the Molecular Mechanisms of Evolution: Stress Increases Genetic Diversity, Mol. Biol. (Moscow), 2002, vol. 36, no. 2, pp. 277-285.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sambuk, E.V., Popova, Y.G., Fizikova, A.Y. et al. Genetic Analysis of Pleiotropic Effects of pho85 Mutations in Yeast Saccharomyces cerevisiae . Russian Journal of Genetics 39, 871–877 (2003). https://doi.org/10.1023/A:1025318520555

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025318520555

Keywords

Navigation