Skip to main content
Log in

Reduction of an Ensemble of Platinum(II) Aquachloride Complexes: Dynamic Effect of the Solvent

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Dynamic effect of the solvent is studied for the first time ever for the process that occurs in the vicinity of the activationless region, namely, the reaction of electroreduction of an ensemble of platinum(II) aquachloride complexes on a negatively charged mercury electrode. A sequential analysis of the sucrose influence on the interface structure and the equilibrium solvation energy is performed. Estimates of the above effects are given. These are necessary for subtracting the dependence of the electron transfer rate on the solvent relaxation time from the observed overall dependence on the concentration of the viscosity-forming additive. A procedure for estimating the sucrose concentration in the reaction layer is suggested and on this basis the increase in the local viscosity near the interface, which is caused by the presence of a surface excess of sucrose, is approximately taken into account. The potential interval where the reaction under study occurs in an almost adiabatic mode is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frumkin, A.N., Izbrannye trudy: Elektrodnye protsessy (Selected Works: The Electrode Processes), Moscow: Nauka, 1987.

    Google Scholar 

  2. Nazmutdinov, R.R., Glukhov, D.V., Tsirlina, G.A., and Petrii, O.A., Elektrokhimiya, 2002, vol. 38, p. 812.

    Google Scholar 

  3. Nazmutdinov, R.R., Glukhov, D.V., Tsirlina, G.A., and Petrii, O.A., Elektrokhimiya, 2003, vol. 39, p. 106.

    Google Scholar 

  4. Frumkin, A.N. and Florianovich, G.N., Dokl. Akad. Nauk SSSR, 1951, vol. 80, p. 907.

    Google Scholar 

  5. Kivalo, P. and Laitinen, H.A., J. Am. Chem. Soc., 1955, vol. 77, p. 5205.

    Google Scholar 

  6. Nikolaeva-Fedorovich, N.V. and Petrii, O.A., Zh. Fiz. Khim., 1961, vol. 25, p. 1270.

    Google Scholar 

  7. Kravtsov, V.I. and Kukushkina, V.A., Elektrokhimiya, 1973, vol. 9, p. 1058.

    Google Scholar 

  8. Pobelov, I.V., Borzenko, M.I., Tsirlina, G.A., and Petrii, O.A., Elektrokhimiya, 2001, vol. 37, p. 270.

    Google Scholar 

  9. Bezruchko, M.M., Tsventarnyi, E.G., and Malev, V.V., Elektrokhimiya, 2001, vol. 37, p. 1367.

    Google Scholar 

  10. Marcus, R.A., J. Chem. Phys., 1965, vol. 43, p. 679.

    Google Scholar 

  11. Dogonadze, R.R. and Kuznetsov, A.M., Itogi Nauki Tekh., Ser.: Elektrokhim., 1969, vol. 5, p. 5.

    Google Scholar 

  12. Nazmutdinov, R.R., Pobelov, I.V., and Tsirlina, G.A., in preparation.

  13. Zhang, X., Leddy, J., and Bard, A.J., J. Am. Chem. Soc., 1985, vol. 107, p. 3719.

    Google Scholar 

  14. Zhang, X., Yang, H., and Bard, A.J., J. Am. Chem. Soc., 1987, vol. 109, p. 1916.

    Google Scholar 

  15. Khoshtariya, D.E., Dolidze, T.D., Krulic, D., Fatouros, N., and Devilliers, D., J. Phys. Chem. B, 1998, vol. 102, p. 7800.

    Google Scholar 

  16. Khoshtariya, D.E., Dolidze, T.D., Zusman, L.D., and Waldeck, D.H., J. Phys. Chem. A, 2001, vol. 105, p. 1818.

    Google Scholar 

  17. Fawcett, W.R. and Opallo, M., Angew. Chem., Int. Ed. Engl., 1994, vol. 33, p. 2131.

    Google Scholar 

  18. Fawcett, W.R. and Colby, A.F., Jr., J. Electroanal. Chem., 1989, vol. 270, p. 103.

    Google Scholar 

  19. Fawcett, W.R. and Colby, A.F., Jr., J. Electroanal. Chem., 1991, vol. 306, p. 71.

    Google Scholar 

  20. Fawcett, W.R. and Colby, A.F., Jr., Electrochim. Acta, 1991, vol. 36, p. 1767.

    Google Scholar 

  21. Weaver, M.J., Molecular Electrochemistry of Inorganic, Bioinorganic, and Organometallic Compounds, Dordrecht: Kluwer Academic, 1993, p. 193.

    Google Scholar 

  22. Fu, Y., Cole, A.S., and Swaddle, T.W., J. Am. Chem. Soc., 1999, vol. 121, p. 10410.

    Google Scholar 

  23. Krishnan, M. and de Levie, R., J. Electroanal. Chem., 1982, vol. 131, p. 97.

    Google Scholar 

  24. Parsons, R. and Peat, R., J. Electroanal. Chem., 1981, vol. 122, p. 299.

    Google Scholar 

  25. San Biago, P.L., Martorana, V., La Fata, L., and Bulone, D., Chem. Phys. Lett., 2000, vol. 329, p. 221.

    Google Scholar 

  26. Lipkowski, J., Buess-Herman, Cl., Lambert, J.P., and Gierst, L., J. Electroanal. Chem., 1986, vol. 202, p. 169.

    Google Scholar 

  27. Robinson, R.A. and Stokes, R.M., Electrolyte Solutions, London: Butterworths, 1955, p. 356.

    Google Scholar 

  28. Chenlo, F., Moreira, R., Pereira, G., and Ampudia, A., J. Food Eng., 2002, vol. 54, p. 347.

    Google Scholar 

  29. Angyal, S.J., Chem. Soc. Rev., 1980, vol. 9, p. 415.

    Google Scholar 

  30. Laurie, S.H., in Comprehensive Coordination Chemistry, Wilkinson, G., Gillar, R.D., and McCleverty, J.A., Eds., Oxford: Pergamon, 1987, vol. 2, p. 984.

    Google Scholar 

  31. Emsley, J., The Elements, Oxford: Clarendon, 1991.

    Google Scholar 

  32. Gupta, K.K.S., Begum, B.A., and Pal, B., Carbohydr. Res., 1998, vol. 309, p. 303.

    Google Scholar 

  33. Tsirlina, G.A. and Petrii, O.A., Elektrokhimiya, 2003, vol. 39, p. 363.

    Google Scholar 

  34. Calef, D.F. and Wolynes, P.G., J. Phys. Chem., 1983, vol. 87, p. 3387.

    Google Scholar 

  35. Calef, D.F. and Wolynes, P.G., J. Chem. Phys., 1983, vol. 78, p. 470.

    Google Scholar 

  36. Brunschwig, B.S., Logan, J., Newton, M.D., and Sutin, N., J. Am. Chem. Soc., 1980, vol. 102, p. 5798.

    Google Scholar 

  37. Sumi, H. and Marcus, R.A., J. Chem. Phys., 1986, vol. 84, p. 4894.

    Google Scholar 

  38. Nadler, W. and Marcus, R.A., J. Chem. Phys., 1987, vol. 86, p. 3906.

    Google Scholar 

  39. Fröhlich, H., Theory of Dielectrics: Dielectric Constant and Dielectric Loss, Oxford: Clarendon, 1958.

    Google Scholar 

  40. Vuks, M.F., Elektricheskie i opticheskie svoistva molekul i kondensirovannykh sred (Electrical and Optical Properties of Molecules and Condensed Media), Leningrad: Len. Gos. Univ., 1984.

    Google Scholar 

  41. Fawcett, W.R., Liquids, Solutions, and Interfaces, New York: Oxford University Press, 2002, ch. 4.

    Google Scholar 

  42. Akhadov, Ya.Yu., Dielektricheskie svoistva chistykh zhidkostei (Dielectric Properties of Pure Liquids), Moscow: Izd. Standartov, 1972.

    Google Scholar 

  43. Barthel, J., Bachhuber, K., Bucher, R., and Hetznauer, H., Chem. Phys. Lett., 1990, vol. 165, p. 369.

    Google Scholar 

  44. Hynes, J.T., J. Phys. Chem., 1986, vol. 90, p. 3701.

    Google Scholar 

  45. Akhadov, Ya.Yu., Dielektricheskie svoistva binarnykh rastvorov (Dielectric Properties of Binary Solutions), Moscow: Nauka, 1977.

    Google Scholar 

  46. Spravochnik khimika (A Chemist's Handbook), Nikol'skii, B.P., Ed., Moscow: Khimiya, 1984, p. 733.

    Google Scholar 

  47. German, E.D. and Kuznetsov, A.M., Elektrokhimiya, 1990, vol. 26, p. 931.

    Google Scholar 

  48. Nazmutdinov, R.R., Pobelov, I.V., Tsirlina, G.A., and Petrii, O.A., J. Electroanal. Chem., 2002, vol. 491, p. 126.

    Google Scholar 

  49. Damaskin, B.B., Petrii, O.A., and Batrakov, V.V., Adsorption of Organic Compounds on Electrodes, New York: Plenum, 1971.

    Google Scholar 

  50. Docoslis, A., Giese, R.F., and van Oss, C.J., Colloids Surf. B, 2000, vol. 19, p. 147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pobelov, I.V., Kuz'minova, Z.V., Tsirlina, G.A. et al. Reduction of an Ensemble of Platinum(II) Aquachloride Complexes: Dynamic Effect of the Solvent. Russian Journal of Electrochemistry 39, 828–838 (2003). https://doi.org/10.1023/A:1025199921154

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025199921154

Keywords

Navigation