Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Gale EA. The discovery of type 1 diabetes. Diabetes 2001;50:217–226.

    Google Scholar 

  2. Atkinson MA, Eisenbarth GS. Type 1 diabetes: New perspectives on disease pathogenesis and treatment. Lancet 2001;358:221–229.

    Google Scholar 

  3. Wucherpfennig KW, Eisenbarth GS. Type 1 diabetes. Nat Immunol 2001;2:767–768.

    Google Scholar 

  4. Karvonen M, Viik-Kajander M, Moltchanova E, Libman I, LaPorte R, Tuomilehto J. Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project Group. Diabetes Care 2000;23:1516–1526.

    Google Scholar 

  5. Bodansky HJ, Staines A, Stephenson C, Haigh D, Cartwright R. Evidence for an environmental effect in the aetiology of insulin dependent diabetes in a transmigratory population. BMJ 1992;304:1020–1022.

    Google Scholar 

  6. Raymond NT, Jones JR, Swift PG, Davies MJ, Lawrence IG, McNally PG, Burden ML, Gregory R, Botha JL, Burden AC. Comparative incidence of Type I diabetes in children aged under 15 years from South Asian and White or Other ethnic backgrounds in Leicestershire, UK, 1989 to 1998. Diabetologia 2001;44:B32–B36.

    Google Scholar 

  7. Redondo MJ, Yu L, Hawa M, Mackenzie T, Pyke DA, Eisenbarth GS, Leslie RD. Heterogeneity of type I diabetes: Analysis of monozygotic twins in Great Britain and the United States. Diabetologia 2001;44:354–362.

    Google Scholar 

  8. Bingley PJ, Gale EA. Rising incidence ofIDDMin Europe. Diabetes Care 1989;12:289–295.

    Google Scholar 

  9. Gale EA. The rise of childhood type 1 diabetes in the 20th century. Diabetes 2002;51:3353–3361.

    Google Scholar 

  10. Patterson CC, Dahlquist G, Soltesz G, Green A. Is childhood-onset Type I diabetes a wealth-related disease? An ecological analysis of European incidence rates. Diabetologia 2001;44:B9–B16.

    Google Scholar 

  11. Jun HS, Yoon JW. The role of viruses in type I diabetes: Two distinct cellular and molecular pathogenic mechanisms of virus-induced diabetes in animals. Diabetologia 2001;44:271–285.

    Google Scholar 

  12. Like AA, Rossini AA. Streptozotocin-induced pancreatic insulitis: New model of diabetes mellitus. Science 1976;193:415–417.

    Google Scholar 

  13. Rorsman P. The pancreatic beta-cell as a fuel sensor: An electrophysiologist's viewpoint. Diabetologia 1997;40:487–495.

    Google Scholar 

  14. Schuit F, Flamez D, De Vos A, Pipeleers D. Glucose-regulated gene expression maintaining the glucose-responsive state of beta-cells. Diabetes 2002;51:S326–S332.

    Google Scholar 

  15. Flamez D, Berger V, Kruhoffer M, Orntoft T, Pipeleers D, Schuit FC. Critical role for cataplerosis via citrate in glucose-regulated insulin release. Diabetes 2002;51:2018–2024.

    Google Scholar 

  16. Schuit F, De Vos A, Farfari S, Moens K, Pipeleers D, Brun T, Prentki M. Metabolic fate of glucose in purified islet cells. Glucoseregulated anaplerosis in beta cells. J Biol Chem 1997;272:18572–18579.

    Google Scholar 

  17. Farfari S, Schulz V, Corkey B, Prentki M. Glucose-regulated anaplerosis and cataplerosis in pancreatic beta-cells: Possible implication of a pyruvate/citrate shuttle in insulin secretion. Diabetes 2000;49:718–726.

    Google Scholar 

  18. Burkart V, Wang ZQ, Radons J, Heller B, Herceg Z, Stingl L, Wagner EF, Kolb H. Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozocin. Nat Med 1999;5:314–319.

    Google Scholar 

  19. Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 1996;20:463–466.

    Google Scholar 

  20. Grankvist K, Marklund SL, Taljedal IB. CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem J 1981;199:393–398.

    Google Scholar 

  21. Tiedge M, Lortz S, Drinkgern J, Lenzen S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 1997;46:1733–1742.

    Google Scholar 

  22. Gerbitz KD, Gempel K, Brdiczka D. Mitochondria and diabetes. Genetic, biochemical, and clinical implications of the cellular energy circuit. Diabetes 1996;45:113–126.

    Google Scholar 

  23. Helgason T, Jonasson MR. Evidence for a food additive as a cause of ketosis-prone diabetes. Lancet 1981;2:716–720.

    Google Scholar 

  24. Helgason T, Ewen SW, Ross IS, Stowers JM. Diabetes produced in mice by smoked/cured mutton. Lancet 1982;2:1017–1022.

    Google Scholar 

  25. Dahlquist GG, Blom LG, Persson LA, Sandstrom AI, Wall SG. Dietary factors and the risk of developing insulin dependent diabetes in childhood. BMJ 1990;300:1302–1306.

    Google Scholar 

  26. Virtanen SM, Jaakola L, Rasanen L, Ylonen K, Aro A, Lounamaa R, Akerblom HK, Tuomilehto J, Group TCDiFDS. Nitrate and nitrite intake and the risk for type I diabetes in Finnish children. Diabet Med 1994;11:656–662.

    Google Scholar 

  27. Kostraba JN, Gay EC, Rewers M, Hamman RF. Nitrate levels in community drinking water and risk of IDDM. Diabetes Care 1992;15:1505–1508.

    Google Scholar 

  28. Parslow RC, Mckinney PA, Law GR, Staines A, Williams R, Bodansky HJ. Incidence of childhood diabetes mellitus inYorkshire, northern England, is associated with nitrate in drinking water–an ecological analysis. Diabetologia 1997;40:550–556.

    Google Scholar 

  29. Karam JH, Lewitt PA, Young CW, Nowlain RE, Frankel BJ, Fujiya H, Freedman ZR, Grodsky GM. Insulinopenic diabetes after rodenticide (Vacor) ingestion: A unique model of acquired diabetes in man. Diabetes 1980;29:971–978.

    Google Scholar 

  30. Taniguchi H, Yamashiro Y, Chung MY, Hara Y, Ishihara K, Ejiri K, Baba S. Vacor inhibits insulin release from islets in vitro.J Endocrinol Invest 1989;12:273–275.

    Google Scholar 

  31. Kenney RM, Michaels IA, Flomenbaum NE, Yu GS. Poisoning with N-3-pyridylmethyl-N-p-nitrophenylurea (Vacor). Immunoperoxidase demonstration of beta-cell destruction. Arch Pathol Lab Med 1981;105:367–370.

    Google Scholar 

  32. Degli Esposti M, Ngo A, Myers MA. Inhibition of mitochondrial complex I may account for IDDM induced by intoxication with the rodenticide Vacor. Diabetes 1996;45:1531–1534.

    Google Scholar 

  33. Spencer PS, Ludolph AC, Kisby GE. Neurologic diseases associated with use of plant components with toxic potential. Environ Res 1993;62:106–113.

    Google Scholar 

  34. Eizirik DL, Kisby GE. Cycad toxin-induced damage of rodent and human pancreatic beta-cells. Biochem Pharmacol 1995;50:355–365.

    Google Scholar 

  35. Morgan RW, Hoffmann GR. Cycasin and its mutagenic metabolites. Mutat Res 1983;114:19–58.

    Google Scholar 

  36. Elsner M, Guldbakke B, Tiedge M, Munday R, Lenzen S. Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetologia 2000;43:1528–1533.

    Google Scholar 

  37. Pieper AA, Brat DJ, Krug DK, Watkins CC, Gupta A, Blackshaw S, Verma A, Wang ZQ, Snyder SH. Poly(ADP-ribose) polymerasedeficient mice are protected from streptozotocin-induced diabetes. Proc Natl Acad Sci USA 1999;96:3059–3064.

    Google Scholar 

  38. Masutani M, Suzuki H, Kamada N, Watanabe M, Ueda O, Nozaki T, Jishage K, Watanabe T, Sugimoto T, Nakagama H, Ochiya T, Sugimura T. Poly(ADP-ribose) polymerase gene disruption conferred mice resistant to streptozotocin-induced diabetes. Proc Natl Acad Sci USA 1999;96:2301–2304.

    Google Scholar 

  39. Shaw Dunn J, Sheehan HL, McLetchie NGB. Necrosis of the islets of Langerhans produced experimentally. Lancet 1943;244:484–487.

    Google Scholar 

  40. Elsner M, Tiedge M, Guldbakke B, Munday R, Lenzen S. Importance of the GLUT2 glucose transporter for pancreatic beta cell toxicity of alloxan. Diabetologia 2002;45:1542–1549.

    Google Scholar 

  41. Winterbourn CC, Munday R. Glutathione-mediated redox cycling of alloxan. Mechanisms of superoxide dismutase inhibition and of metal-catalyzed OH formation. Biochemical Pharmacology 1989;38:271–277.

    Google Scholar 

  42. Drose S, Altendorf K. Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases. J Exp Biol 1997;200:1–8.

    Google Scholar 

  43. Myers MA, Mackay IR, Rowley MJ, Zimmet PZ. Dietary microbial toxins and type 1 diabetes–a new meaning for seed and soil. Diabetologia 2001;44:1199–1200.

    Google Scholar 

  44. Hettiarachchi K, Myers MA. In utero exposure to the dietary toxin bafilomycin promotes autoimmune diabetes in NOD mice. Manuscript in preparation.

  45. Natsume M, Yamada A, Tashiro N, Abe H. Differential production of the phytotoxins thaxtomin A and concanamycins A and B by potato common scab-causing Streptomyces spp. Annals of the Phytopathological Society of Japan 1998;64:202–204.

    Google Scholar 

  46. Natsume M, Ryu R, Abe H. Production of phytotoxins, concanamycins A and B by Streptomyces spp. causing potato scab. Annals of the Phytopathological Society of Japan 1996;62:411–413.

    Google Scholar 

  47. Myers MA, Hettiarachchi K, Ludeman JL, Wilson AJ, Wilson CR, Zimmet PZ. Dietary microbial toxins and Type 1 diabetes. Ann NY Acad Sci 2003, in press.

  48. Loria R, Bukhalid RA, Fry BA, King RR. Plant pathogenicity in the genus streptomyces. Plant Disease 1997;81:836–846.

    Google Scholar 

  49. Todd JA, Bell JI, McDevitt HO. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 1987;329:599–604.

    Google Scholar 

  50. Pugliese A, Zeller M, Fernandez A, Jr, Zalcberg LJ, Bartlett RJ, Ricordi C, Pietropaolo M, Eisenbarth GS, Bennett ST, Patel DD. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet 1997;15:293–297.

    Google Scholar 

  51. Vafiadis P, Bennett ST, Todd JA, Nadeau J, Grabs R, Goodyer CG, Wickramasinghe S, Colle E, Polychronakos C. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 1997;15:289–292.

    Google Scholar 

  52. Morahan G, Huang D, Ymer SI, Cancilla MR, Stephen K, Dabadghao P, Werther G, Tait BD, Harrison LC, Colman PG. Linkage disequilibrium of a type 1 diabetes susceptibility locus with a regulatory IL12B allele. Nat Genet 2001;27:218–221.

    Google Scholar 

  53. Nistico L, Buzzetti R, Pritchard LE, Van der Auwera B, Giovannini C, Bosi E, Larrad MT, Rios MS, Chow CC, Cockram CS, Jacobs K, Mijovic C, Bain SC, Barnett AH, Vandewalle CL, Schuit F, Gorus FK, Tosi R, Pozzilli P, Todd JA. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian Diabetes Registry. Hum Mol Genet 1996;5:1075–1080.

    Google Scholar 

  54. Yoon JW, Jun HS, Santamaria P. Cellular and molecular mechanisms for the initiation and progression of beta cell destruction resulting from the collaboration between macrophages and T cells. Autoimmunity 1998;27:109–122.

    Google Scholar 

  55. Kiesel U, Kolb H. Low-dose streptozotocin-induced autoimmune diabetes is under the genetic control of the major histocompatibility complex in mice. Diabetologia 1982;23:69–71.

    Google Scholar 

  56. Paik SG, Fleischer N, Shin SI. Insulin-dependent diabetes mellitus induced by subdiabetogenic doses of streptozotocin: Obligatory role of cell-mediated autoimmune processes. Proc Natl Acad Sci USA 1980;77:6129–6133.

    Google Scholar 

  57. Elliott JI, Dewchand H, Altmann DM. Streptozotocin-induced diabetes in mice lacking alphabeta T cells. Clin Exp Immunol 1997;109:116–120.

    Google Scholar 

  58. Herold KC, Bloch TN, Vezys V, Sun Q. Diabetes induced with low doses of streptozotocin is mediated byVbeta 8.2+T-cells. Diabetes 1995;44:354–359.

    Google Scholar 

  59. Herold KC, Bluestone JA, Montag AG, Parihar A, Wiegner A, Gress RE, Hirsch R. Prevention of autoimmune diabetes with nonactivating anti-CD3 monoclonal antibody. Diabetes 1992;41:385–391.

    Google Scholar 

  60. Kim YT, Steinberg C. Immunological studies on the induction of diabetes in experimental animals. Cellular basis for the induction of diabetes by streptozotocin. Diabetes 1984;33:771–777.

    Google Scholar 

  61. Weide LG, Lacy PE. Low-dose streptozocin-induced autoimmune diabetes in islet transplantation model. Diabetes 1991;40:1157–1162.

    Google Scholar 

  62. Horwitz MS, La Cava A, Fine C, Rodriguez E, Ilic A, Sarvetnick N. Pancreatic expression of interferon-gamma protects mice from lethal coxsackievirus B3 infection and subsequent myocarditis. Nat Med 2000;6:693–697.

    Google Scholar 

  63. Rose NR, Mackay IR. Molecular mimicry: A critical look at exemplary instances in human diseases. Cell Mol Life Sci 2000;57:542–551.

    Google Scholar 

  64. Hoglund P, Mintern J, Waltzinger C, Heath W, Benoist C, Mathis D. Initiation of autoimmune diabetes by developmentally regulated presentation of islet cell antigens in the pancreatic lymph nodes. J Exp Med 1999;189:331–339.

    Google Scholar 

  65. Gagnerault MC, Luan JJ, Lotton C, Lepault F. Pancreatic lymph nodes are required for priming of beta cell reactive T cells in NOD mice. J Exp Med 2002;196:369–377.

    Google Scholar 

  66. Scaglia L, Cahill CJ, Finegood DT, Bonner-Weir S. Apoptosis participates in the remodeling of the endocrine pancreas in the neonatal rat. Endocrinology 1997;138:1736–1741.

    Google Scholar 

  67. Trudeau JD, Dutz JP, Arany E, Hill DJ, Fieldus WE, Finegood DT. Neonatal beta-cell apoptosis: A trigger for autoimmune diabetes? Diabetes 2000;49:1–7.

    Google Scholar 

  68. Rovere P, Vallinoto C, Bondanza A, Crosti MC, Rescigno M, Ricciardi-Castagnoli P, Rugarli C, Manfredi AA. Bystander apoptosis triggers dendritic cell maturation and antigen-presenting function. J Immunol 1998;161:4467–4471.

    Google Scholar 

  69. Green EA, Flavell RA. The initiation of autoimmune diabetes. Curr Opin Immunol 1999;11:663–669.

    Google Scholar 

  70. O'Brien BA, Fieldus WE, Field CJ, Finegood DT. Clearance of apoptotic beta-cells is reduced in neonatal autoimmune diabetesprone rats. Cell Death Differ 2002;9:457–464.

    Google Scholar 

  71. O'Brien BA, Huang Y, Geng X, Dutz JP, Finegood DT. Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced. Diabetes 2002;51:2481–2488.

    Google Scholar 

  72. Zhang Y, O'Brien B, Trudeau J, Tan R, Santamaria P, Dutz JP. In situ beta cell death promotes priming of diabetogenic CD8 Tlymphocytes. J Immunol 2002;168:1466–1472.

    Google Scholar 

  73. Hugues S, Mougneau E, Ferlin W, Jeske D, Hofman P, Homann D, Beaudoin L, Schrike C, Von Herrath M, Lehuen A, Glaichenhaus N. Tolerance to islet antigens and prevention from diabetes induced by limited apoptosis of pancreatic beta cells. Immunity 2002;16:169–181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myers, M.A., Mackay, I.R. & Zimmet, P.Z. Toxic Type 1 Diabetes. Rev Endocr Metab Disord 4, 225–231 (2003). https://doi.org/10.1023/A:1025196127517

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025196127517

Navigation