Skip to main content
Log in

Applications of isotope effects in solids

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article reviews the current status of the employment of the isotope effect in solids. Diffusion, self-diffusion processes with different isotopes in pure materials and heterostructures (quantum wells), neutron transmutation doping of different semiconducting crystals, optical fiber as well as use isotope-mixed crystals (C, LiH) as the generator of the coherent radiation in the ultraviolet range of the spectrum are the main modern applications of isotope science and engineering. There are briefly discussed the other future applications including modern personal computer, isotope-based quantum computer as well as information storage. We hope to give sufficient references to published work so that the interested reader can easily find the primary literature sources to this rapidly expanding field of solid state physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.G. Plekhanov, “Isotope Effects in Solid State Physics” (Academic Press, New York, London, 2001).

    Google Scholar 

  2. M. Cardona, in “Festkorperprobleme/Adv. in Solid State Physics,” edited by R. Helbig (Vieweg, Braunschweig, Wiesbaden, 1994) p. 35.

    Google Scholar 

  3. E.E. Haller, J.Appl.Phys. 77 (1995) 2857.

    Google Scholar 

  4. V.G. Plekhanov, Mater.Sci.and Eng. 35 (2001) 139.

    Google Scholar 

  5. Idem., Physics-Uspekhi (Moscow) 40 (1997) 553.

    Google Scholar 

  6. Idem., Rep.Progr.Phys. 61 (1998) 1045.

  7. G. Leibfried and W. Ludwig, in “Theory of Anharmonic Effects in Crystals,” edited by F. Seitz and D. Turnbull (Academic Press, New York, 1961) Vol. 12.

    Google Scholar 

  8. W. C. Roberts-Austen, Philos.Trans.R.Soc.(London) A 187 (1896) 404.

    Google Scholar 

  9. R. F. Mehl, Trans.AIME 122 (1936) 11.

    Google Scholar 

  10. W. Jost, “Diffusion in Solids, Liquids, Gass” (Academic Press, New York, 1952).

    Google Scholar 

  11. W. Seith, “Diffusion in Metallen” (Springer-Verlag, Berlin, 1955).

    Google Scholar 

  12. L. Slifkin, D. Lazarus and C. T. tomizuka, J.Appl.Phys. 23 (1952) 1032.

    Google Scholar 

  13. C.T. Tomizuka, in “Methods of Experimental Physics,” edited by K. Larl-Horrowitz and V. A. Johnson (Academic Press, New York, 1959) Vol. 6, Part A, p. 364.

    Google Scholar 

  14. A. S. Nowick, J.Appl.Phys. 22 (1951) 1182.

    Google Scholar 

  15. N. F. Mott and R. F. gurney, “Electronic Processes in Ionic Crystals” (Clarendon Press, Oxford, 1948).

    Google Scholar 

  16. J.H. Crawford, Jr and L. M. Slifkin (eds.), “Point Defects in Solids” (Plenum Press, London, 1975) Vol. 1/2.

    Google Scholar 

  17. R. E. Hoffman and D. Turnbull, J.Appl.Phys. 22 (1951) 634.

    Google Scholar 

  18. J. Cadek and J. Janda, Hung.Listy 12 1008 (1957) (English transl.: AERE Transl. 840, Harwell).

    Google Scholar 

  19. Y. Adda and J. Philbert, La Diffusion dans les Solides (Press Universitaires de France, Paris, 1966).

    Google Scholar 

  20. T. S. Lundy, in “Techniques of Metals Research,” edited by R. A. Rapp (Wiley, New York, 1970) Vol. 4, Part 2, Chap. 9A.

    Google Scholar 

  21. F. Beniere, in “Mass Transport in Solids” edited by F. Beniere and C. R. A. Catlow (Plenum Press, London, 1983).

    Google Scholar 

  22. A.S. Nowick and J. J. Burton (eds.), “Diffusion in Solids: Recent Developments” (Academic Press, NewYork, 1975).

    Google Scholar 

  23. G.E. Murch and A. S. Nowick (eds.), “Diffusion in Crystalline Solids” (Academic Press, New York, 1984).

    Google Scholar 

  24. P. Sigmund, in “Sputtering by Particle Bombardment,” edited by R. Behrisch (Springer-Verlag, Berlin, 1981) Chap. 2.

    Google Scholar 

  25. High-Power Semiconductor Devices, IEEE Transactions on Electron Devices ED-23 (1976).

  26. D. A. Antoniadis and I. Moskowitz, J.Appl.Phys. 53 (1982) 9214.

    Google Scholar 

  27. R. A. Craven, in “Semiconductor Silicon'81,” edited by H. R. Huff, R. J. Kriegr and Y. Takeishi (The Electrochem. Soc. Pennington, NJ, 1981).

    Google Scholar 

  28. N. L. Peterson, in “Diffusion in Solids-Recent Developments,” edited by A. S. Nowick and J. J. Burton (Academic Press, New York, 1975) p. 115.

    Google Scholar 

  29. A. Fick, Poggy Ann. 94 (1855) 59.

    Google Scholar 

  30. J. R. Manning, “Diffusion Kinetics of Atoms in Crystals” (Van Nostrand, Princeton, NJ, 1968).

    Google Scholar 

  31. A. S. Nowick and B. S. Berry, “Inelastic Relaxation in Crystalline Solids” (Academic Press, New York, 1987) Chaps. 7 and 10.

    Google Scholar 

  32. D. Wolf, “Spin Temperature and Nuclear-Spin Relaxation in Matter: Basic Principles and Applications” (Oxford University Press, London-New York, 1979).

    Google Scholar 

  33. J. Crank, “The Mathematics of Diffusion” (Oxford University Press, London-New York, 1975).

    Google Scholar 

  34. H. S. Carslaw and J. C. Jaeger, “Conduction of Heat in Solids” (Oxford University Press, London, New York, 1959).

    Google Scholar 

  35. A. D. Le Claire, British J.Appl.Phys. 14 (1963) 35.

    Google Scholar 

  36. P. C. Carman and R. A. W. Haul, Proc.R.Soc.(London) A 222 (1954) 109.

    Google Scholar 

  37. S. J. Rothman, in “Diffusion in Crystalline Solids,” edited by G. E. Murch and A. S. Nowick (Academic Press, New York, 1984) Chap. 1.

    Google Scholar 

  38. M. L. Swanson, R. F. Mehl, G. M. Pound and J. P. Hirth, Trans AIME 224 (1962) 742.

    Google Scholar 

  39. W. Seith and A. Kottman, Angew.Chem. 64 (1952) 379.

    Google Scholar 

  40. H. J. Queisser, J.Appl.Phys. 32 (1961) 1776.

    Google Scholar 

  41. P. S. Ayres and P. G. Winchell, ibid. 34 (1968) 4820.

    Google Scholar 

  42. Idem., ibid. 43 (1972) 816.

    Google Scholar 

  43. E. S. Waida, Acta Metall. 2 (1954) 184.

    Google Scholar 

  44. W. Frank, U. Gosele, H. Mehrer and A. Seeger, in “Diffusion in Crystalline Solids,” edited by G. E. Murch and A. S. Nowick (Academic Press, New York, 1984) Chap. 2.

    Google Scholar 

  45. D. E. Aboltyn, YA. E. Karis and V. G. Plekhanov, Sov.Phys.Solid State 22 (1980) 510.

    Google Scholar 

  46. R. N. Ghoshtagore, Phys.Rev. 155 (1967) 598.

    Google Scholar 

  47. M. Werner, H. Mehrer and H. Siethoff, J.Phys.C: Solid State Phys. 16 (1983) 6185.

    Google Scholar 

  48. P. Bratter and H. Gobrecht, Phys.Stat.Solidi 37 (1970) 869.

    Google Scholar 

  49. A. Seeger and K. P. Chik, ibid. 29 (1968) 455.

    Google Scholar 

  50. D. Gupta, Thin Solid Films 25 (1975) 231.

    Google Scholar 

  51. M. Wutting, Scr.Metall. 3 (1969) 175.

    Google Scholar 

  52. L. W. Barr, D. A. blackburn and A. F. Brown, “Radioisotopes in the Physical Sciences and Industry”(Int.At. Energy Ag., Vienna, 1962) p. 137.

    Google Scholar 

  53. D. L. Styris and C. T. Tomizuka, J.Appl.Phys. 34 (1963) 1001.

    Google Scholar 

  54. L. W. Barr, J. N. Mundy and A. H. Rowe, in “Amorphous Materials,” edited by R. W. Douglas and B. Ellis (Wiley, New York, 1972 ) p. 243.

    Google Scholar 

  55. J. E. Kelly and N. Tomozawa, J.Amer.Ceram. 63 (1980) 478.

    Google Scholar 

  56. D. M. Holloway, J.Vac.Sci.Technol. 12 (1975) 392.

    Google Scholar 

  57. J. W. Mayer and J. M. Poate, in“Thin Film Interdiffusion and Reactions,” edited by N. B. Urli and J. W. Corbett (Wiley, New York, 1978) p. 119.

    Google Scholar 

  58. D. F. Stein and A. Joshi, Annu.Rev.Mater.Sci. 11 (1981) 485.

    Google Scholar 

  59. C. Lea, Met.Sci. 17 (1983) 357.

    Google Scholar 

  60. H. Lutz and R. Sizman, Z.Naturforsch. 19A (1964) 1079.

    Google Scholar 

  61. R. Behrisch, in “Sputtering by Particle Bombardment I,” edited by R. Behrisch (Springer-Verlag, Berlin, New York, 1981).

    Google Scholar 

  62. B. Chapman, “Glow Discharge Processes” (Wiley, New York, 1980).

    Google Scholar 

  63. R. D. Reader and H. R. Kauffman, J.Vac.Sci.Technol. 12 (1975) 1344.

    Google Scholar 

  64. J. N. Mundy and S. J. Tothman, ibid. 1 (1983) 74

    Google Scholar 

  65. D. Gupta and R. R. C. Tsui, Appl.Phys.Lett. 17 (1970) 294.

    Google Scholar 

  66. A. Atkinson and R. I. Taylor, Thin Solid Films 46 (1977) 291.

    Google Scholar 

  67. P. Dorner, W. Gust, A. Lodding, H. Ocklins, B. Predel and U. Roll, Z.Metallk. 73 (1982) 325.

    Google Scholar 

  68. H. Liebl, J.Vac.Sci.Technol. 12 (1975) 385.

    Google Scholar 

  69. W. Reuter and J. E. E. Baglin, ibid. 18 (1981) 282.

    Google Scholar 

  70. J.-L. Seran, Thesis, Universite de Paris, 1976.

  71. M.-P. Macht and V. Naundorf, J.Appl.Phys. 53 (1982) 7551.

    Google Scholar 

  72. H. Bracht, M. Norseng, E. E. Haller, K. Eberl and M. Cardona, Solid State Commun. 112 (1999) 301.

    Google Scholar 

  73. G. J. Slusser and J. S. Slattery, J.Vac.Sci.Technol. 18 (1981) 301.

    Google Scholar 

  74. K. E. Wilzbach and L. Kaplan, J.Amer.Chem.Soc. 72 (1950) 5795.

    Google Scholar 

  75. D. S. Catlett, J. N. Spencer and G. J. Vogt, J.Chem.Phys. 58 (1973) 3432.

    Google Scholar 

  76. J. N. Spencer, D. S. Catlett, G. J. Vogt, ibid. 59 (1973) 1314.

    Google Scholar 

  77. V. B. Ptashnik and T. Yu. Dunaeva, Fiz.Tverd.Tela 19 (1977) 1643 (in Russian).

    Google Scholar 

  78. K. Funke and H. Richtering, Ber.Bunsenges. Phys.Chem. 72 (1968) 619.

    Google Scholar 

  79. T. A. Dellin, G. J. Dienes, C. R. Rischer, R. D. Hatcher and W. D. Wilson, Phys.Rev. B 1 (1970) 1745.

    Google Scholar 

  80. F. E. Pretzel, D. T. Vier, E. G. Szklarz and W. B. Lewis, Los Alamos Scientific Lab. Rep.LA2463 (1961).

  81. H. Letaw, Jr., W. M. Portnoy and L. Slifkin, Phys.Rev. 102 (1956) 636.

    Google Scholar 

  82. M. W. Valenta and C. Ramasastry, ibid. 106 (1957) 73.

    Google Scholar 

  83. H. Widmer and G. R. Grunther-Mor, Helv.Phys.Acta 34 (1961) 635.

    Google Scholar 

  84. D. R. Campbell, Phys.Rev. B 12 (1975) 2318.

    Google Scholar 

  85. G. Vogel, G. Hettich and H. Mehrer, J.Phys.C: Solid State Phys. 16 (1983) 6197.

    Google Scholar 

  86. M. Werner, Ph. D. Thesis, University of Stutgart, Stutgart, FRG, 1984.

  87. P. L. Gruzin, Dokl.Akad.Nauk SSSR 15 (1952) 108 (in Russian).

    Google Scholar 

  88. J. Steigmann, W. Shockley and F. C. Nix, Phys.Rev. 56 (1939) 13.

    Google Scholar 

  89. A. Seeger and W. Frank, Appl.Phys. A 27 (1982) 171

    Google Scholar 

  90. R. F. Peart, Phys.Stat.Solidi 15 (1966) K119.

    Google Scholar 

  91. R. N. Ghoshtagore, Phys.Rev.Lett. 16 (1966) 890.

    Google Scholar 

  92. B. J. Masters and J. M. Fairfield, Appl.Phys.Lett. 8 (1966) 280.

    Google Scholar 

  93. J. M. Fairfield and B. J. Masters, ibid. 38 (1967) 3148.

    Google Scholar 

  94. H. J. Mayer, H. Mehrer and K. Maier, Inst.Phys.Conf.Ser. 31 (1977) 186.

    Google Scholar 

  95. J. Hirvonen and A. Anthla, Appl.Phys.Lett. 35 (1979) 703.

    Google Scholar 

  96. L. Kalinowski and R. Seguin, ibid. 35 (1979) 211.

    Google Scholar 

  97. F. J. Demond, S. Kalbitzer, H. Mannsperger and H. Damjantschitsch, Phys.Lett. A 93 (1983) 503.

    Google Scholar 

  98. H. D. Fuchs, W. Walukiewicz, E. E. Haller, W. Dondl, R. Schorer and G. Abstreite, Phys.Rev. B 51 (1995) 16817.

    Google Scholar 

  99. E. E. Haller, Semicond.Sci.Technol. 5 (1990) 319.

    Google Scholar 

  100. J. Spitzer, T. Ruf, M. Cardona, W. Dondl, R. Schorer, G. Abstreiter and E. E Haller, Phys.Rev.Lett. 72 (1994) 1565.

    PubMed  Google Scholar 

  101. A. A. Berezin, J.Phys.Chem.Solids 48 (1987) 853; 50 (1989) 5.

    Google Scholar 

  102. K. Compaan and Y. Haven, Trans.Faraday Soc. 52 (1956) 786.

    Google Scholar 

  103. J. C. Bourgoin and M. Lanno, Radiat.Effects 46 (1980) 157.

    Google Scholar 

  104. J. G. Mullenn, Phys.Rev. 121 (1961) 1649.

    Google Scholar 

  105. A. D. Leclaire, Philos.Mag. 14 (1966) 1271.

    Google Scholar 

  106. K. Itoh, W. L. Hansen, E. E. Haller, J. W. Farmer, V. I. Ozhogin, in Proc. 5th Int. Conf. on Shallow Levels in Semicond., Kobe, Japan, 1992; H. D. Fuchs, K. M. Itoh and E. E. Haller, Philos.Mag. B70 (1994) 661.

  107. N. L. Peterson, J.Nucl.Mater. 69/70 (1978) 3.

    Google Scholar 

  108. Diffusion in “Solid Metals and Alloys,” edited by H. Mehrer (Landolt-Bornstein New Series, Group III, Springer-Verlag, Berlin, (1990) Vol. 26.

  109. “Intrinsic Properties of Group IV Elements and III-V and I-VII Compounds,” edited by O. Madelung (Landolt-Bornstein, NewSeries, Group III, Springer-Verlag, Berlin, 1989) Vol. 22, Pt. a.

    Google Scholar 

  110. T. Y. Tan, U. M. GÖsele and S. Yu, Cri.iRev.Solid State Phys. 17 (1991) 47.

    Google Scholar 

  111. B. Goldstein, Phys.Rev. 121 (1960) 1305.

    Google Scholar 

  112. H. D. Palfrey, M. Brown and A. F. W. Willoughby, J.Electrochem.Soc. 128 (1981) 2224.

    Google Scholar 

  113. T. Y. Tan, H. M. You, S. Yu. U. M. GÖsele, J.Appl.Phys. 72 (1992) 5206.

    Google Scholar 

  114. D. G. Deppe and N. Holonyak, Jr., ibid. 64 (1988) R93.

    Google Scholar 

  115. L. Wang, L. Hsu, E. E. Haller, J. W. Erickson, A. Fischer, K. Eberl and M. Cardona, Phys.Rev.Lett. 76 (1996) 2342.

    PubMed  Google Scholar 

  116. H. Bracht, E. E. Haller, K. Eberl and M. Cardona, Appl.Phys.Lett. 74 (1999) 49.

    Google Scholar 

  117. L. Wang, J. A. Wolk, L. Hsu and E. E. Haller, ibid. 70 (1997) 1831.

    Google Scholar 

  118. S. O'brien, B. P. Bour and J. R. Shealy, ibid. 53 (1988) 1859.

    Google Scholar 

  119. R. Krause-Rehberg, A. Polity, W. Siegel and G. Kuhnel, Semicond.Sci.Technol. 8 (1993) 290; K. J.Beernik, D. Sun, D. W. Treat and B. P. Bour, iAppl.Phys.Lett. 66 (1995) 3597.

    Google Scholar 

  120. S. F. Wee, M. K. Chai, K. P. Homewood and W. P. Gilin, ibid. 82 (1997) 4842.

    Google Scholar 

  121. B. L. Olmsted and S. N. Houde-Walter, ibid. 63 (1993) 530 and references therein.

    Google Scholar 

  122. W. Walukiewicz, Mater.Res.Soc.Symp. 300 (1993) 421.

    Google Scholar 

  123. W. Schokley and J. L. Moll, Phys.Rev. 119 (1960) 1480.

    Google Scholar 

  124. M. Kawabe, N. Matzuura, N. Shimizu, F. Hasegawa and Y. Nannichi, Jap.J.Appl.Phys. 23 (1984) L632.

    Google Scholar 

  125. K. J Beernik, R. L. Thornton, G. B. Anderson and M. A. Emanuel, Appl.Phys.Lett. 66 (1995) 2422.

    Google Scholar 

  126. J. J. Coleman, P. D. Dapkus, G. G. Kirkpatric, M. D. Camras and N. Holonyak, Jr., ibid. 40 (1982) 904.

    Google Scholar 

  127. J. Kobayashi, M. Nakajima, Y. Bamba, T. Fukunaga, Jap.J.Appl.Phys. 2 (1986) L385.

    Google Scholar 

  128. M. Kawabe, N. Shimizu, F. Hasegawa and Y. Nannichi, Appl.Phys.Lett. 46 (1985) 849.

    Google Scholar 

  129. J. Kobayashi, M. Nakajima, T. Fukunaga, T. Takamori, K. Ishida, and H. Nakashima, Jap.J.Appl.Phys. 25 (1986) L376.

    Google Scholar 

  130. T. Y. Tan and U. GÖsele, J.Appl.Phys. 61 (1987) 1841.

    Google Scholar 

  131. G. A. Baraff and M. SchlÜtter, Phys.Rev.Lett. 55 (1988) 1327.

    Google Scholar 

  132. T. Y. Tan and U. GÖsele, Appl.Phys.Lett. 52 (1988) 1240.

    Google Scholar 

  133. P. Mei, S. A. Schwarz, T. Venkatesan, C. L. Schwartz and E. Colas, ibid. 50 (1987) 1823.

    Google Scholar 

  134. P. Mei, S. A. Schwarz, T. Venkatesan, C. L. Schwartz and E. Colas, J.Appl.Phys. 65 (1989) 2165.

    Google Scholar 

  135. W. M. Li, R. M. Cohen, D. S. Simons and P. H. Chi, Appl.Phys.Lett. 70 (1997) 3392.

    Google Scholar 

  136. K. Muraki and Y. Horikoshi, J.Crystal Growth 175/176 (1997) 162.

    Google Scholar 

  137. idem. Inst.Phys.Conf.Ser. 145 (1996) 547.

    Google Scholar 

  138. H. Bracht, M. Norseng, E. E. Haller, K. Eberl and M. Cardona, Solid State Commun. 112 (1999) 301.

    Google Scholar 

  139. H. Bracht, E. E. Haller, K. Eberl, M. Cardona and R. Clark-Phelps, Mater.Res.Soc.Symp.Proc. 527 (1998) 335.

    Google Scholar 

  140. M. Bockstedte and M. Scheffer, Zs.Phys.Chemie 200 (1997) 195.

    Google Scholar 

  141. J. S. Blakemore, J.Appl.Phys. 53 (1982) R123.

    Google Scholar 

  142. T. Y. Tan, Mater.Sci.and Eng. B 10 (1991) 227.

    Google Scholar 

  143. T. Y. Tan, H.-M. You and U. M. GÖsele, Appl.Phys. A 56 (1993) 249.

    Google Scholar 

  144. I. Lahiri, D. D. Nolte, M. R. Melloch, J. M. Woodall and W. Walukiewicz, Appl.Phys.Lett. 6 (1996) 236.

    Google Scholar 

  145. J. M. Meese, in “Neutron Transmutation Doping in Semiconductors,” edited by J. M. Meese (Plenum Press, NewYork-London, 1979) p. 1.

    Google Scholar 

  146. “Neutron Transmutation Doping in Semiconductors,” edited by J. M. Meese (Plenum Press, New York-London, 1979).

    Google Scholar 

  147. M. A. Krivoglaz, “Theory of Scattering X-rays and Thermal Neutrons by Real Crystals” (Science, Moscow, 1967) (in Russian).

    Google Scholar 

  148. G. Dolling, in “Dynamical Properties of Solids,” edited by G. K. Horton and A. A. Maradudin (North-Holand, Amsterdam, 1974).

    Google Scholar 

  149. B. Dorner, “Inelastic Neutron Scattering in Lattice Dynamics” (Springer Tracts in Modern Physics, Berlin, 1982) Vol. 93.

    Google Scholar 

  150. V. G. Plekhanov, Uspekhi Fizicheskikh Nauk (Moscow) 173 (2003) 711.

    Google Scholar 

  151. D. E. Cullen and P. J. Hlavac, ENDF/B Cross Sections, Brookhaven National Laboratory, Upton, New York, 1972.

    Google Scholar 

  152. “Semiconductors Doped by Nuclear Reactions,” edited by L. S. Smirnov (Science, Novosibirsk, 1981) (in Russian).

    Google Scholar 

  153. D. De Soete, “Neutron Activation Analysis” (John Wiley, New York, 1971).

    Google Scholar 

  154. K. N. Mukhin, “Introduction in Nuclear Physics” (Atomizdat, Moscow, 1965) (in Russian).

    Google Scholar 

  155. M. Tanenbaum and A. D. Mils, J.Electrochem.Soc. 108 (1961) 171.

    Google Scholar 

  156. M. S. SnÖller, IEEE Trans.Electron Devices ED-21 (1974) 313;W. Haas and M SnÖller, J.Electron.Mater. 5 (1976) 57.

    Google Scholar 

  157. D. S. Billington and J. H. Crawford, Jr., “Radiation Damage in Solids” (Princeton University Press, Prnceton, NJ, 1961) Chap. 2.

    Google Scholar 

  158. M. V. Chukichev and V. S. Vavilov, Sov.Phys.Solid State 3 (1961) 1103; V. S. VAVILOV, “Influence of Radiation on the Semiconductors” (Science, Moscow, 1963) (in Russian).

    Google Scholar 

  159. T. G. G. Smith, in [145] p. 157.

  160. idem. in “Neutron Transmutation Doping of Semiconductor Material,” edited by R. D. Larrabee (Plenum Press, New York-London, 1984) p. 83.

    Google Scholar 

  161. J. L. Bourdon and G. Restelli, in [145] p. 181.

  162. J. E. Morrisey, T. Tillinghast, A. P. Perro and B. J. Baliga, in [145] p. 171.

  163. B. J. Baliga, in “Neutron Transmutation Doping of Semiconductor Materials,” edited by R. D. Larrabeeed (Plenum Press, New York-London, 1984) p. 167.

    Google Scholar 

  164. N. A. Bickford and R. F. Fleming, in [145] p. 165.

  165. D. A. Becker and P. D. Lafleur, J.Radioanal.Chem. 19 (1974) 149.

    Google Scholar 

  166. M. A. Kirk and L. R. Greenwood, in [145] p. 143.

  167. P. Breant, in “Neutron Transmutation Doping of Semiconductor Materials,” edited by Larrabee (Plenum Press, New York- London, 1984) p. 103.

    Google Scholar 

  168. M. T. Robinson, in “Nuclear Fision Reactors,” edited by J. L. Hall and J. H. C. Maple (British Nuclear Energy Society, London, 1970) p. 364.

    Google Scholar 

  169. J. Lindhard, V. Nielsen, M. Scharff and P. V. Thomsen, Mat.Fys.Medd.Dan.Vid.Selsk. 33 (1963) N10.

    Google Scholar 

  170. N. Kaltenborn and O. Malmros, in “Neutron Transmutation Doping of Semiconductor Materials,” edited by R. D. Larrabee (Plenum Press, New York-London, 1984) p. 139.

    Google Scholar 

  171. K. Hansen, K. Stendal, K. Andersen and K. Heydorn, in [167] p. 91.

  172. A. D. Rossin, published by T. H. Blewitt and T. J. Koppenaal, in “Radiation Effects,” edited by W. F. Sheely (Gordon and Breach, New York, 1966) p. 561.

    Google Scholar 

  173. J. A Horak and T. H. Blewitt, Phys.Stat.Solidi 9 (1972) 721.

    Google Scholar 

  174. B. S. Brown, T. H. Blewitt, T. L. Scott and A. C. Klank, J.Nucl.Mat. 52 (1974) 215.

    Google Scholar 

  175. E. J. Parma, Jr. and R. R. Hart, in “Neutron Transmutation Doping of Semiconductor Materials,” edited by R. D. Larrabee (Plenum Press, New York-London, 1984) p. 127.

    Google Scholar 

  176. N. A. Vlasov, “Neutrons” (Science, Moscow, 1971) (in Russian).

    Google Scholar 

  177. U. A. Arifov, V. A. Sinukov and YU. A. Korostelev, in “Crystallization of Thin Films” (Fan, Tashkent, 1970) p. 133 (in Russian).

    Google Scholar 

  178. V. G. Plekhanov, Physics-Uspekhi (Moscow) 43 (2000) 1147.

    Google Scholar 

  179. P. J. Clairon and J. M. Meese, in [145], p. 291.

  180. R. M. Brugger and W. Yellow, in Proc. Conf. on Neutron Scattering, edited by R. M. Moon (1976) Vol. 11, p. 1117.

  181. K. Lark-Horowitz, in Proc. Conf. OnSemicond. Materials, edited by H. K. Henish (Butterworth, London, 1951) p. 47.

  182. H. C. Schweinler, J.Appl.Phys. 30 (1959) 1125.

    Google Scholar 

  183. E. E. Haller, ibid. 77 (1995) 2857.

    Google Scholar 

  184. SH. M. Mirianashwili and D. I. Nanobashwili, Fiz.i Techn.Poluprovodnikov 10 (1970) 1879 (in Russian).

    Google Scholar 

  185. M. H. Young, A. T. Hunter, R. Baron and O. I. Marsch, in “Neutron Transmutation Doping of Semiconductor Materials,” edited by R. D. Larrabee (Plenum Press, New York-London, 1984) p. 1.

    Google Scholar 

  186. M. Uematsu and K. Wada, Appl.Phys.Lett. 58 (1991) 2015.

    Google Scholar 

  187. A. P. Galushka and I. D. Konosemko, Atom Energy 13 (1991) 277.

    Google Scholar 

  188. J. M. Meese and P. J. Clairon, in [145], p. 109.

  189. C. N. Klahr and M. Cohen, Nucleonics 22 (1964) 62.

    Google Scholar 

  190. V. A. Kharchenko and S. P. Solov'ev, Fiz.i Techn.Poluprovodnikov 11 (1971) 1641 (in Russian).

    Google Scholar 

  191. “Neutron-Transmutation-Doped Silicon,” edited by J. Guldberg (Plenum Press, New York, 1981).

    Google Scholar 

  192. L. Certis, “Introduction in Neutron Physics” (Atomizdat, Moscow, 1965) (in Russian).

    Google Scholar 

  193. “Handbook of Physical Constants,” edited by I. K. Kikoin (Atomizdat, Moscow, 1976) (in Russian).

    Google Scholar 

  194. H. M. James and O. Malmros, IEEE Trans.on Electron Devices, ED-23 (1976) 797.

    Google Scholar 

  195. J. W. Cleland, in Proc. Inter. School of Physics, Enrico Fermi-Course XVIII-Radiation Damage in Solids, edited by D. S. Billington (Academic Press, New York, 1962 ) p. 384.

    Google Scholar 

  196. H. J. Stein, in “Neutron Transmutations Doping in Semiconductors,” edited by J. M. Meese (Plenum Press, NewYork-London, 1979) p. 229.

    Google Scholar 

  197. V. A. J. Van Lint, R. E. Leadon and J. F. Colwell, IEEE Trans.Nucl.Sci. NS-19 (1972) 18.

    Google Scholar 

  198. M. Yoshida, J.Phys.Soc.Japan 16 (1961) 44.

    Google Scholar 

  199. D. K. Brice, Radiat Effects 11 (1971) 227.

    Google Scholar 

  200. M. Bertolotti, T. Papa, D. Sette, V. Grasso and G. Vitali, IL Nuovo Cimento 29 (1963) 4310.

    Google Scholar 

  201. M. Bertolotti, D. Sette and G. Vitali, J.Appl.Phys. 38 (1967) 2645.

    Google Scholar 

  202. M. L. Swanson, J. R. Parsons and C. W. Hoelke, in “Albany Conf. on Radiation Effects in Semiconductors,” edited by J. W. Corbett and G. D. Watkins (Plenum Press, New York, 1971) p. 359.

    Google Scholar 

  203. G. Den Onden, Phil.Mag. 19 (1969) 321.

    Google Scholar 

  204. R. S. Nelson, Radiat.Effects 32 (1977) 19.

    Google Scholar 

  205. B. R. Gossick, J.Appl.Phys. 30 (1959) 1214.

    Google Scholar 

  206. J. H. Crawford,Jr. and J. W. Cleland, ibid. 30 (1959) 1204.

    Google Scholar 

  207. B. L. Gregory, IEEE Trans.on Nucl.Sci. NS-16 (1969) 53.

    Google Scholar 

  208. H. J. Stein, ibid. NS-15 (1968) 69.

    Google Scholar 

  209. idem., Appl.Phys.Lett. 15 (1969) 61.

    Google Scholar 

  210. E. E. Haller, N. P. Palaio, M. Rodder, W. L. Hansen and E. Kreysa, in “Neutron Transmutation Doping of Semiconductor Materials,” edited by R. L. Larrabee (Plenum Press, 1984) p. 21; E. E. Haller, Infrared Phys.Technol. 35 (1994) 127.

  211. Y. Ootuka, H. Matsuoka and S. Kobayashi, in “Anderson Localization,” edited by T. Ando and H. Fukuyama (Springer-Verlag, Berlin, 1988) p. 40.

    Google Scholar 

  212. K. M. Itoh, E. E. Haller, J. W. Beeman and W. L. Hansen, Phys.Rev.Lett. 77 (1996) 4058.

    PubMed  Google Scholar 

  213. I. Schlimak, M. Kaveh and R. Ussyshkin, ibid. 77 (1996) 1103.

    PubMed  Google Scholar 

  214. I. Schlimak, Fiz.Tverd.Tela 41 (1999) 794 (in Russian).

    Google Scholar 

  215. R. Rentzsch, A. N. Ionov, CH. Reich, V. Ginodmanand I. Schlimak, ibid. 41 (1999) 837 (in Russian).

    Google Scholar 

  216. A. N. Ionov, M. N. Matveev and D. V. Shmik, J.Techn.Phys. (St-Petersburg) 59 (1989) 169 (in Russian).

    Google Scholar 

  217. I. Schlimak, A. N. Ionov, R. Rentzsch and J. M. Lazebnik, Semicond.Sci.Technol. 11 (1996) 1826.

    Google Scholar 

  218. “Table of Isotopes,” 6th ed, edited by C. M. Lederer, J. M. Hollander and I. Perlman (Wiley and Sons Inc., New York, 1967).

    Google Scholar 

  219. B. I. Shklovskii and A. L. Efros, in “Electronic Properties of Doped Semiconductors” (Solid State Series, Springer-Verlag, Berlin, 1984) Vol. 45.

    Google Scholar 

  220. E. E. Haller, W. L. Hansen and F. S. Goulding, Adv.Phys. 30 (1981) 93.

    Google Scholar 

  221. H. Fritzsche, “The Metal Non-Metal Transition in Disordered Systems,” edited by L. R. Friedman and D. P. Tunstall (Scotish Universities Summer School in Physics, St. Andrews, Scotland, 1978).

    Google Scholar 

  222. N. F. Mott, “Metal-Insulator Transition,” 2nd ed. (Taylor and Francis, London, 1990).

    Google Scholar 

  223. P. A. Lee and T. V. Ramakrishnan, Rev.Mod.Phys. 57 (1985) 287.

    Google Scholar 

  224. R. Rentzsch, A. N. Ionov, CH. Reich and A. MÜller, Phys.Stat.Solidi (b) 205 (1998) 269.

    Google Scholar 

  225. T. F. Rosenbaum, K. Andres, G. A. Thomas and F. N. Bhatt, Phys.Rev.Lett. 45 (1980) 1723.

    Google Scholar 

  226. P. F. Newman and D. F. Holcomb, Phys.Rev. B 28, (1983) 638; Phys.Rev.Lett. 51 (1983) 2144.

    Google Scholar 

  227. W. N. Shafarman, D. W. Koon and T. G. Castner, Phys.Rev. B 40 (1989) 1216.

    Google Scholar 

  228. A. N. Ionov, M. J. Lea and R. Rentzsch, JETP Lett. (Moscow) 54 (1991) 473.

    Google Scholar 

  229. Peihua Dai, Y. Zhang and M. P. Sarachik, Phys.Rev.Lett. 66 (1991) 1914.

    PubMed  Google Scholar 

  230. G. A. Thomas, Y. Ootuka, S. Katsumoto, S. Kobayashi and W. Sasaki, Phys.Rev. B 25 (1982) 4288.

    Google Scholar 

  231. M. J. Hirsch, U. Thomanschefsky and D. F. Holcomb, ibid. 37 (1988) 8257.

    Google Scholar 

  232. A. G. Zabrodskii and K. N. Zinov'eva, Sov.Phys.JETP 59 (1984) 425.

    Google Scholar 

  233. M. Rohde and H. Micklitz, Phys.Rev. B 36 (1987) 7572.

    Google Scholar 

  234. G. Hertel, D. J. Bishop, E. G. Spencer and R. C. Dynes, Phys.Rev.Lett. 50 (1983) 743.

    Google Scholar 

  235. W. L. Mcmillan and J. Mochel, ibid. 46 (1981) 556.

    Google Scholar 

  236. TH. Zint, M. Rohde and H. Micklitz, Phys.Rev. B 41 (1990) 4831.

    Google Scholar 

  237. E. W. Hass and M. S. SchnÖller, in [24] p. 803.

  238. N. F. Mott, Proc.Phys.Soc.(London) A 62 (1949) 416.

    Google Scholar 

  239. P. W. Anderson, Phys.Rev. 109 (1958) 1492.

    Google Scholar 

  240. A. Mackinnon and B. Kramer, Phys.Rev.Lett. 47 (1981) 1546; M. Henneke, B. Kramer and T. Ohtsuki, Europhys.Lett. 27 (1994) 389.

    Google Scholar 

  241. E. Hafstetter and M. Schreiber, Phys.Rev.Lett. 73 (1994) 3137.

    PubMed  Google Scholar 

  242. T. Kawarabayashi, T. Ohtsuki, K. Slevin and Y. Ono, ibid. 77 (1996) 3593.

    PubMed  Google Scholar 

  243. J. Chayes, L. Chayes, D. S. Fisher and T. Spencer, ibid. 54 (1986) 2375.

    Google Scholar 

  244. “Neutron Transmutation Doping of Semiconductor Materials,” edited by R. D. Larrabee (Plenum Press, NewYork-London, 1984).

    Google Scholar 

  245. A. N. Ionov, I. S. Shlimak and M. N. Matveev, Solid State Commun. 47 (1983) 763.

    Google Scholar 

  246. D. Chattopadhyay and H. J. Queisser, Rev.Mod.Phys. 53 (1981) 745.

    Google Scholar 

  247. W Von Ammon, Nucl.Instrum.Methods B 63 (1992) 95.

    Google Scholar 

  248. K. M. Itoh, W. Walukiewicz, H. D. Fuchs, J. W. Beeman, E. E. Haller and V. I. Ozhogin, Phys.Rev. B 50 (1994) 16995.

    Google Scholar 

  249. K. Itoh, W. L. Hansen, E. E. Haller, J. W. Farmer and V. I. Ozhogin, Mater.Sci.Forum 117/118 (1993) 117.

    Google Scholar 

  250. K. M. Itoh, W. L. Hansen, E. E. Haller, J. W. Farmer and V. I. Ozhogin, J.Mater.Res. 8 (1993) 127.

    Google Scholar 

  251. C. Erginsoy, Phys.Rev. 79 (1950) 1013.

    Google Scholar 

  252. A. I. Ansel'm, Zh.Eksp.Teor.Fiz.(Moscow) 24 (1953) 85 (in Russian).

    Google Scholar 

  253. N. Sclar, Phys.Rev. 104 (1956) 1559; 104 (1956) 1548.

    Google Scholar 

  254. T. C. McGill and R. Baron, ibid. 11 (1975) 5208.

    Google Scholar 

  255. B. K. Ridley, “Quantum Process in Semiconductors,” 3rd ed. (Clarendon Press, Oxford, 1993).

    Google Scholar 

  256. R. D. Dingle, Philos.Mag. 46 (1955) 831.

    Google Scholar 

  257. H. Brooks, Adv.Electron Phys. 7 (1955) 85.

    Google Scholar 

  258. W. Shockley, “Elextrons and Holes in Semiconductors” (Van Nostrand Reinhold, Princeton, 1950).

    Google Scholar 

  259. J. Blakemore, “Semiconductor Statistics,” 2nd ed. (Dover, New York, 1985).

    Google Scholar 

  260. V. G. Dzhakeli and Z. S. Kachlishvili, Sov.Phys.Semicond. 18 (1984) 926.

    Google Scholar 

  261. J. W. Farmer and J. C. Nugent, in [159] p. 225.

  262. M. J. Hill, P. M. Van Iseghem and W. Zimmerman, in [24] p. 809.

  263. A. Muhlbauer, F. Seldak and P. Voss, J.Electrochem.Soc. 122 (1975) 1113.

    Google Scholar 

  264. J. Messier, Y. Le Corroler and J. M. Flores, IEEE Trans.Nucl.Sci. NS-11 (1964) 276.

    Google Scholar 

  265. P. V. Van Iseghem, IEEE Trans.on Electron Devices ED-23 (1976) 823.

    Google Scholar 

  266. International Atomic Energy Agency: Regulations for the Safe Transport of Radioactive Materials, Rev. Ed., 1973, p. 8.

  267. H. Hamanaka, K. Kuriyama and M. Yahagi, Appl.Phys.Lett. 45 (1984) 786.

    Google Scholar 

  268. D. W. Koon and T. G. Castner, Phys.Rev.Lett. 60 (1988) 1755.

    PubMed  Google Scholar 

  269. P. Dai, Y. Zhang and M. P. Sarchik, Phys.Rev. B 49 (1994) 14039.

    Google Scholar 

  270. H. Grussbach and M. Schreiber, ibid. 51 (1995) 663.

    Google Scholar 

  271. P. Dai, Y. Zhang and M. P. Sarchik, Phys.Rev.Lett. 70 (1993) 1968.

    PubMed  Google Scholar 

  272. S. B. Field and T. F. Rosenbaum, ibid. 55 (1985) 522.

    PubMed  Google Scholar 

  273. R. Rentzsch, K. J. Friedland and A. N. Ionov, Phys.Stat.Solidi (b) 146 (1988) 199.

    Google Scholar 

  274. R. Magerle, A. Burchard, M. Deicher and T. Kerle, Phys.Rev.Lett. 75 (1995) 1594.

    PubMed  Google Scholar 

  275. K. Kuriyama and K. Sakai, Phys.Rev. B 53 (1996) 987.

    Google Scholar 

  276. K. Kuriyama, Y. Miyamoto, T. Koyama and O. Ogawa, J.Appl.Phys. 86 (1999) 2352.

    Google Scholar 

  277. K. Kuriyama, K. Ohbora and M. Okada, Solid State Commun. 113 (2000) 415.

    Google Scholar 

  278. S. M. Sze, “Physics of Semiconductor Devices” (Wiley, New York, 1969).

    Google Scholar 

  279. H. Winston, H. Kimura, M. H. Young and O. J. Marsh, in AAGG/West Sixth Conf. on Crystal Growth, 1982, Fallen Leaf Lake, CA.

    Google Scholar 

  280. “Table of Isotopes,” edited by C. M. Lederer and V. S. Shirley, (Wiley, New York, 1978).

    Google Scholar 

  281. D. Pons and J. C. Bourgoin, J.Phys.C: Solid State Phys. 18 (1985) 3839.

    Google Scholar 

  282. Properties of Gallium Arsenide, EMIS Data Reviews Series No. 2 (INSPEC, The Institute of Electrical Engineers, London, 1990).

  283. L. Pavesi and M. Guzzi, J.Appl.Phys. 75 (1994) 4779.

    Google Scholar 

  284. A. Mooradianand A. L. Msworter, Phys.Rev.Lett. 19 (1967) 849.

    Google Scholar 

  285. T. Sekine, K. Uchinokura and E. Matzuura, J.Phys.Chem.Solids 48 (1977) 109.

    Google Scholar 

  286. T. Kawakubo and M. Okada, J.Appl.Phys. 67 (1990) 3111.

    Google Scholar 

  287. K. Kuriyama, Y. Miyamoto, M. Okada, ibid. 85 (1999) 3499.

    Google Scholar 

  288. P. J. Dean, in “Progress in Solid State Chemistry,” edited by J. O. McCaldin and G. Somorjai (Pergamon Press, Oxford, 1973) Vol. 8, p. 1.

    Google Scholar 

  289. H. Alawadhi, R. Vogelgesang, T. P. Chin and J. M. Woodall, J.Appl.Phys. 82 (1997) 4331.

    Google Scholar 

  290. C. C. Klick and J. H. Shulman, in “Solid State Physics,” edited by F. Seitz and D. Turnbull (Academic Press, New York, 1957) Vol. 5, p. 100.

    Google Scholar 

  291. H. Kressel (ed.), “Semiconductor Devices for Optical Communications,” Vol. 39 (Topics in Applied Physice, Springer-Verlag, Berlin-Heidelberg-New York, 1982).

    Google Scholar 

  292. P. C. Becker and M. R. X. De Barras, in “Materials for Optoelectronics,” edited by M. Quilec (Kluwer Academic Publishers, Boston-Dordrecht-London, 1996).

    Google Scholar 

  293. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall Medical, London-New York-Melbourne, 1996).

    Google Scholar 

  294. D. Marcuse, “Light Transmission Optics” (Van Nostrand, New York, 1972).

    Google Scholar 

  295. W. B. Allan, “Fibre Optics Theory and Practice” (Plenum Press, New York, 1973).

    Google Scholar 

  296. N. S. Kapany, “Fiber Optics” (Academic Press, New York-London, 1967).

    Google Scholar 

  297. J. A. Arnaud, Beam and Fibre Optics (Academic Press, New York, 1976).

    Google Scholar 

  298. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, New York, 1974).

    Google Scholar 

  299. J. E. Midwinter, Optical Fibers for Transmission (Wiley and Sons, New York-Toronto, 1979).

    Google Scholar 

  300. I. E. Tamm, “Theory of Electricity” (Science, Moscow, 1957) (in Russian).

    Google Scholar 

  301. M. Born AND E. Wolf, “Principles of Optics” (Pergamon Press, Oxford, 1970).

    Google Scholar 

  302. R. E. Collin, “Field Theory of GuidedWaves” (McGraw-Hill, New York, 1960).

    Google Scholar 

  303. E. Snitzer, J.Opt.Soc.Amer. 51 (1961) 491.

    Google Scholar 

  304. D. Gloge, Appl.Optics 10 (1971) 2252.

    Google Scholar 

  305. J. A. Stratton, “Electromagnetic Theory” (McGraw-Hill, New York, 1941).

    Google Scholar 

  306. P. Moon and D. E. Spencer, “Field Theory Handbook” (Springer-Verlag, Berlin, 1961).

    Google Scholar 

  307. S. D. Personick, Bell Syst.Techn.J. 52 (1973) 843.

    Google Scholar 

  308. R. Olshansky and D. B. Keck, Appl.Optics 15 (1976) 483.

    Google Scholar 

  309. idem., in “Technical Digest of OSA Topical Meeting an Optical Fiber Transmission” (Optical Society of America, Washington, DC, 1975).

    Google Scholar 

  310. “Materials for Optoelectronics,” edited by M. Quillec (Kluwer Academic Publishers, Boston-Dordrecht-London, 1996).

    Google Scholar 

  311. TH. Beck, N. Reng and H. Weber, Opt.and Lasers Eng. 34 (2000) 255; W. Heitman, J.Opt.Commun. 8 (1987) 3.

    Google Scholar 

  312. H. R. Philipp, J.Phys.Chem.Solids 32 (1971) 1935.

    Google Scholar 

  313. S. T. Pantelides and W. Harrison, Phys.Rev. B 13 (1976) 2667.

    Google Scholar 

  314. N. F. Mott, in “Physics of SiO2 and Its Interfaces,” edited by S. T. Pantelides (Proc. Int. Conf., New York, 1978) p. 1.

  315. D. L. Griscom, J.Non-Crystal.Solids 40 (1980) 211; D. L. Griscom, E. L. Friebele and K. J. Long, J.Appl.Phys. 54 (1983) 3743.

    Google Scholar 

  316. A. U. Grinfelds, D. E. Aboltyn and V. G. Plekhanov, Sov.Phys.Solid State 26 (1984) 1075; Phys.Stat.Solidi (a) 81 (1984) K23.

    Google Scholar 

  317. R. P. Gupta, Phys.Rev. B 32 (1985) 8278.

    Google Scholar 

  318. M. Horiguchi, Electron.Lett. 12 (1976) 311.

    Google Scholar 

  319. H. Osonai, T. Shioda, T. Moriyama, S. Araki, M. Horiguchi, T. Izawa and H. Takate, Electron.Lett. 12 (1976) 550.

    Google Scholar 

  320. D. A. Pinnow, T. C. Rich, F. W. Ostermayer and M. Didomenico, Jr., Appl.Phys.Lett. 22 (1973) 527.

    Google Scholar 

  321. J. Schroeder, R. Mohr, P. B. Mocedo and C. J. Montrose, J.Amer.Ceram.Soc. 56 (1973) 510.

    Google Scholar 

  322. K. J. Beales, J. E. Midwinter, G. R. Newns and C. R. Day, Post Off.Elec.Eng.J. 67 (1974) 80.

    Google Scholar 

  323. B. Scott and H. Rawson, Glass Technol. 14 (1973) 115.

    Google Scholar 

  324. K. J. Beales, C. R. Day, W. J. Dunkan, J. E. Midwinter and G. R. Newns, Proc.IEEE 123 (1976) 591.

    Google Scholar 

  325. T. Inoue, K. Koizumi and Y. Ikeda, ibid. 123 (1976) 577.

    Google Scholar 

  326. A. M. Zheltikov, Uspekhi Fiz.Nauk (Moscow) 170 (2000) 1203 (in Russian).

    Google Scholar 

  327. “Lasers Theory and Applcations,” edited by K. Thyagarajan and A. K. Ghatak (Plenum Press, New York, 1982).

    Google Scholar 

  328. O. Svelto, “Principles of Lasers,” 2nd ed. (Plenum Press, New York, 1982).

    Google Scholar 

  329. L. V. Tarasov, “Laser Physics” (Mir Publishers, Moscow, 1983).

    Google Scholar 

  330. N. V. Karlov, “Lectures on Quantum Electronics” (Science, Moscow, 1983) (in Russian).

    Google Scholar 

  331. A. Einstein, Mitt.Phys.Ges.(Zurich) 16(18) (1916) 47.

    Google Scholar 

  332. F. Reif, “Statistical Thermal Physics” (McGraw-Hill, NewYork, 1965).

    Google Scholar 

  333. M. S. Brodin and V.Ya. Reznitchenko, in “Physics A2B6 Compounds,” edited by A. N. Georgabiani and M. K. Sheinkman (Science, Moscow, 1986) p. 184 (in Russian).

    Google Scholar 

  334. A. J. Taylor, D. J. Erskine and C. L. Tang, J.Opt.Soc.Amer. (B) 2 (1985) 663.

    Google Scholar 

  335. J. A. Kash and J. C. Tsang, in “Light Scattering in Solids,” edited by M. Cardona and G.G üntherodt (Springer-Verlag, Berlin, 1991) Vol. 6, p. 423.

    Google Scholar 

  336. W. P. Dumke, Phys.Rev. 127 (1962) 1559.

    Google Scholar 

  337. R. E. Nahory, K. L. Shakley, R. F. Leheny and R. A. Logan, Phys.Rev.Lett. 27 (1971) 1647.

    Google Scholar 

  338. H. Kressel, in“Laser Handbook,” edited by F. T. Arechi and E. O. Schulz-Dubois (North-Holland, Amsterdam, 1972) Chap. B5.

    Google Scholar 

  339. F. Stern, ibid., Chap. B4.

  340. C. Klingshirn, in “Spectr. Soli-State Laser Type Matter” (Proc. Course Enrico Fermi, Erice, New York-London, 1987).

  341. C. A. Klein, Appl.Optics 5 (1966) 1922; IEEE QE-4 (1968) 186.

    Google Scholar 

  342. G. Lasher and F. Stern, Phys.Rev. 133 (1964) A553.

    Google Scholar 

  343. H. Haug, J.Appl.Phys. 39 (1968) 4687; Adv.Solid State Phys. XXII (1982) 149.

    Google Scholar 

  344. W. Van Roosbroeck and W. Shokley, Phys.Rev. 94 (1954) 1558.

    Google Scholar 

  345. C. J. Hwang, ibid. 2 (1970) 4126.

    Google Scholar 

  346. H. Haug and S. Koch, Phys.Stat.Solidi (b) 82 (1977) 531.

    Google Scholar 

  347. K. C. Liu and R. L. Liboff, J.Appl.Phys. 54 (1983) 5633.

    Google Scholar 

  348. P. W. Anderson, “Concepts in Solids” (Benjamin, Reading, MA, 1963).

    Google Scholar 

  349. H. Haken, “Handbuch der Physik” (Springer-Verlag, Berlin, 1970) Vol. XXV/2c.

    Google Scholar 

  350. idem., in “Quantum Optics,” edited by S. M. Kay and A. Maitland (Academic Press, New York, 1970).

    Google Scholar 

  351. R. L. Liboff, Int.J.Theor.Phys. 18 (1979) 185.

    Google Scholar 

  352. A. W. Schawlow and C. H. Townes, Phys.Rev. 112 (1958) 1940.

    Google Scholar 

  353. R. S. Knox, “Theory of Excitons” (Academic Press, NewYork, 1963).

    Google Scholar 

  354. E. F. Gross, “Selected Papers” (Science, Leningrad, 1976) (in Russian).

    Google Scholar 

  355. D. G. Thomas, (ed.), “II-VI Semiconducting Compounds” (Benjamin, New York, 1967).

    Google Scholar 

  356. N. G. Basov, O. V. Bogdankevich and A. G. Devyatkov, Sov.Phys.JETP 20 (1964) 1902; Sov.Phys.Solid State 8 (1966) 1221.

    Google Scholar 

  357. J. R. Packard, D. A. Campbell and W. C. Tait, J.Appl.Phys. 38 (1967) 5255.

    Google Scholar 

  358. C. Benoit A La Guilaume, J. M. Debever and F. Salvan, in [354] p. 609; Phys.Rev. 169 (1967) 567.

  359. L. A. Kulevsky and A. M. Prokhorov, IEEE QE-2 (1966) 584.

    Google Scholar 

  360. M. S. Brodin, K. A. Dmitrenko, S. G. Shevel and L. V. Taranenko, in Proc. Int. Conf. Lasers'82 (STS Press, USA, 1983) p. 287.

    Google Scholar 

  361. M. S. Brodin, S. V. Zakrevski, V. S. Mashkevich and V. YA. Reznitchenko, Sov.Phys.-Semicond. 1 (1967) 495.

    Google Scholar 

  362. V. G. Plekhanov, in Proc. Int. Conf. LASERS'80 (McClean, VA: STS, 1981) p. 91.

    Google Scholar 

  363. K. Takiyama, M. I. Abd-Elrahman, T. Fujita and T. Okada, Solid State Commun. 99 (1996) 793.

    Google Scholar 

  364. V. G. Plekhanov and V. I. Altukhov, in Proc. Int. Conf. LASERS'82 (McClean, VA: STS, 1983) p. 292.

    Google Scholar 

  365. C. Klingshirn and H. Haug, Phys.Reports 70 (1981) 315.

    Google Scholar 

  366. N. G. Basov, V. A. Danilychev and YU. M. Popov, JETP Lett. 12 (1970) 473 (in Russian).

    Google Scholar 

  367. N. Schwenter, O. Dossel and N. Nahme, in “Laser Techniques for Extreme Ultraviolet Spectroscopy” (APTP, New York, 1982) p. 163.

    Google Scholar 

  368. V. G. Plekhanov, in Proc. Int. Conf.NLO'88, Dublin, 1988; Prog. in Solid State Chem. 29(2001) 71.

  369. T. Ruf, M. Cardona, K. Thonke, P. Pavone and T. R. Anthony, Solid State Commun. 105 (1988) 311.

    Google Scholar 

  370. V. G. Plekhanov, Quan.Electron.(Moscow) 16 (1989) 2156 (in Russian).

    Google Scholar 

  371. V. G. Plekhanov, T. A. Betenekova and F. F. Gavrilov, Sov.Phys, Solid State 25 (1983) 159.

    Google Scholar 

  372. R. W. Roessler and W. C. Walker, J.Phys.Chem.Solids 28 (1967) 1507.

    Google Scholar 

  373. M. Piacentini, Solid State Commun. 17 (1975) 697.

    Google Scholar 

  374. V. G. Plekhanov, in Proc. Int. Conf. Advances Solid-State Lasers, March, 1990, (Salt Lake City, UT, SOQUE, 1990).

    Google Scholar 

  375. V. F. Agekyan, B. G. Alexandrov and YU. A. Stepanov, Fiz.Tekh.Poluprovod. 22 (1988) 2240 (in Russian).

    Google Scholar 

  376. A. A. Berezin, Solid State Commun. 65 (1988) 819.

    Google Scholar 

  377. A. A. Berezin, J. S. Chang and A. Ibrahim, Chemtronix (UK) 3 (1988) 116.

    Google Scholar 

  378. H. Werheit, in “Landolt-Börnstein,” edited by O. Madelung (Springer-Verlag, Berlin, 1983) Vol. 17e, p. 9.

    Google Scholar 

  379. A. A. Berezin, J.Chem.Phys. 80 (1984) 1241; Kybernetes 15 (1986) 15.

    Google Scholar 

  380. H. W. Knoff, M. H. Mueller and L. Heaton, Acta Cryst. 23 (1967) 549.

    Google Scholar 

  381. T. Hidaka and K. Oka, Phys.Rev. B 35 (1987) 8502.

    Google Scholar 

  382. A. V. Antonov, N. V. Galanov and A. I. Issakov, Sov.Phys.Tech.Phys. 31 (1986) 942.

    Google Scholar 

  383. V. A. Belyakov and S. V. Semenov, JETP 90 (2000) 290.

    Google Scholar 

  384. B. E. Kane, Nature 393 (1998) 133.

    Google Scholar 

  385. M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information” (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plekhanov, V.G. Applications of isotope effects in solids. Journal of Materials Science 38, 3341–3429 (2003). https://doi.org/10.1023/A:1025192632644

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025192632644

Keywords

Navigation