Skip to main content
Log in

Disordered Media and Materials: A Review of Recent Structural Data and Trends in Application of Raman Spectroscopy

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

A number of problems regarding the structure of glasses and other materials are considered on the basis of available data on inelastic scattering in the hard X-ray range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Tanaka, H., Physical Origin of the Boson Peak Deduced from a Two-Order Parameter Model of Liquids, J. Phys. Soc. Jpn., 2001, vol. 70, no. 5, pp. 1178-1181.

    Google Scholar 

  2. Zubavichus, Ya.V. and Slovokhotov, Yu.L., Synchrotron X-ray Radiation in Physicochemical Investigations, Usp. Khim., 2001, vol. 70, no. 5, pp. 429-463.

    Google Scholar 

  3. Bobovich, Ya.S., Inelastic Radiation Scattering and the Problem of Glass Structure: Evidence, Hypotheses, and Models, Fiz. Khim. Stekla, 2001, vol. 27, no. 6, pp. 713-729 [Glass Phys. Chem. (Engl. transl.), 2001, vol. 27, no. 6, pp. 485-496].

    Google Scholar 

  4. Bobovich, Ya.S., On the Multiphonon Secondary Emission Spectra of Semiconductor Crystals, Opt. Spektrosk., 2002, vol. 92, no. 4, pp. 652-656.

    Google Scholar 

  5. Denisov, V.N., Mavrin, B.N., and Podobedov, V.B., Hyper-Raman Scattering by Vibrational Excitations in Crystals, Glasses, and Liquids, Phys. Rep., 1987, vol. 151, no. 1, pp. 1-92.

    Google Scholar 

  6. Heitler, W., The Quantum Theory of Radiation, Oxford: Clarendon, 1954. Translated under the title Kvantovaya teoriya izlucheniya, Moscow: Inostrannaya Literatura, 1956.

    Google Scholar 

  7. Tohji, K. and Udagawa, Y., X-ray Raman Scattering as a Substitute for Soft-X-ray Extended X-ray-Absorption Fine Structure, Phys. Rev. B: Condens. Matter, 1979, vol. 39, no. 11, pp. 7590-7594.

    Google Scholar 

  8. Nagasawa, H., Mouvikis, S., and Schulke, W., X-ray Raman Spectrum of Li, Be, and Graphits in a High-Resolution Inelastic Synchrotron X-ray Scattering Experiment, J. Phys. Soc. Jpn., 1979, vol. 58, no. 2, pp. 710-717.

    Google Scholar 

  9. Isaacs, E.D. and Platzman, Ph., Inelastic X-ray Scattering in Condensed Matter Systems, Phys. Today, 1996, vol. 49, no. 2, pp. 40-45.

    Google Scholar 

  10. Masciovecho, C., Monaco, G., Ruocco, G., et al., High Frequency Dynamics of Glass Forming Liquids of the Glass Transition, Phys. Rev. Lett., 1998, vol. 80, no. 3, pp. 544-547.

    Google Scholar 

  11. Mavrin, B.N., Hyper-Raman Scattering by Vibrational Excitations in Crystals, Glasses, and Liquids, Doctoral Dissertation, Troitsk, 1981.

  12. Baranov, A.Y., Bobovich, Y.S., and Petrov, V.I., Evidence of Quantum-Size Effect and Electron-Phonon Interactions in Resonance Raman Scattering Spectra of Semiconductor Nanocrystals, J. Raman Spectrosc., 1993, vol. 24, no. 6, pp. 767-773.

    Google Scholar 

  13. Chang, L.-T., Herron, N., and Wang, Y., Nonresonant Third-Order Optical Nonlinearity of Quantum-Confined CdS Cluster: A Third-Harmonic Generation Study, J. Appl. Phys., 1989, vol. 66, no. 7, pp. 3417-3419.

    Google Scholar 

  14. Alferov, Zh., History and Future of Semiconductor Heterostructures, Fiz. Tekh. Poluprovodn. (St. Petersburg) 1998, vol. 32, no. 1, pp. 3-18.

    Google Scholar 

  15. Wu Ming Chen, Nanosuperconductor YBa2Cu3Oy, Phys. Rev. B: Condens. Matter, 1998, vol. 57, no. 13, pp. 7503-7505.

    Google Scholar 

  16. Klochikhin, A.A., Permogorov, S.A., and Reznitskii, A.N., Multiphonon Processes in Resonance Scattering and Exciton Luminescence of Crystals, Zh. Eksp. Teor. Fiz., 1976, vol. 71, no. 6, pp. 2230-2251.

    Google Scholar 

  17. Korovin, L.I., Pavlov, S.T., and Eshpulatov, B.E., Enhancement of Multiphonon Resonance Raman Scattering in Quasi-Two-Dimensional Electron System, Pis'ma Zh. Eksp. Teor. Fiz., 1990, vol. 51, no. 10, pp.-516-517.

    Google Scholar 

  18. Weeks, R.A., The Many Varieties of E' Centers: A Review, J. Non-Cryst. Solids, 1994, vol. 179, pp. 1-9.

    Google Scholar 

  19. Uchino, T., Takahashi, M., and Yoke, T., Structure and Formation Mechanism of the E' Center in Amorphous SiO2, Appl. Phys. Lett., 2001, vol. 78, no. 18, pp. 2730-2732.

    Google Scholar 

  20. Sokolov, A.P., Kisliuk, A., Soltwisch, M., and Quitmann, D., Medium-Range Order in Glasses: Comparison of Raman and Diffraction Measurements, Phys. Rev. Lett., 1992, vol. 69, no. 10, pp. 1540-1543.

    Google Scholar 

  21. Springer Series in Solid State Sciences, vol. 126: Physical Properties of Quasicrystals, Stadnik, Z.M., Ed., Berlin: Springer-Verlag, 1999.

  22. Borodin, V.A. and Manichev, V.N., On the Existence of Covalent Quasicrystals, Zh. Eksp. Teor. Fiz., 1998, vol. 114, no. 6, pp. 2187-2193.

    Google Scholar 

  23. Hosono, H., Kawamura, K., Kawasoe, H., and Nishij, J., Nanometer-Scale Heterogeneity in SiO2-GeO2 Glasses, J. Appl. Phys., 1996, vol. 80, no. 5, pp. 3115-3117.

    Google Scholar 

  24. Österberg, U. and Margulis, W., Dye Laser Pumped by Nd-YAG Laser Pulses Frequency Doubled in a Glass Optical Fiber, Opt. Lett., 1986, vol. 11, no. 8, pp. 516-518.

    Google Scholar 

  25. Tsai, T.E., Saift, M.A., Frebele, E.J., et al., Correlation of Defect Centers with Second-Harmonic Generation in Ge-Doped and Ge-P-Doped Silica-Core Single-Mode Fibers, Opt. Lett., 1989, vol. 14, no. 18, pp. 1023-1025.

    Google Scholar 

  26. Antonyuk, B.P. and Antonyuk, V.B., Self-Organization of Excitations in Germanium Silicate Optical Fibers and Its Role in Second Harmonic Generation, Usp. Fiz. Nauk, vol. 171, no. 1, pp. 61-78.

  27. Kazansky, P.G., Dong, L., and Rassel, P.St.J., High Second-Order Nonlinearities in Poled Silicate Fibers, Opt. Lett., 1994, vol. 19, no. 10, pp. 701-703.

    Google Scholar 

  28. Belinicher, V.I. and Struman, B.I., Photovoltaic Effect in Media without Inversion Center, Usp. Fiz. Nauk, 1980, vol. 130, no. 3, pp. 415-458.

    Google Scholar 

  29. Baranova, N.B. and Zel'dovich, B.Ya., Extension of Holography to Multifrequency Fields, Pis'ma Zh. Eksp. Teor. Fiz., 1987, vol. 45, no. 12, pp. 562-565.

    Google Scholar 

  30. Krol, D.M., Di Giovanni, D.J., Pleibel, W., and Stolen, R.H., Observation of Resonant Enhancement of Photoinduced Second-Harmonic Generation in Tm-Doped Aluminosilicate Glass Fiber, Opt. Lett., 1993, vol. 18, no. 15, pp. 1220-1222.

    Google Scholar 

  31. Ruocco, G. and Sette, F., The High-Frequency Dynamics of Liquid Water, J. Phys.: Condens. Matter, 1999, vol. 11, pp. R259-R293.

    Google Scholar 

  32. Philips, W.A., Tunneling States in Amorphous Solids, J. Low Temp. Phys., 1972, vol. 7, pp. 351-357.

    Google Scholar 

  33. Andersen, P.W., Halperin, B.I., and Varma, C.M., Anomalous Low-Temperature Properties of Glasses and Spin Glasses, Philos. Mag., 1972, no. 1, pp. 1-9.

  34. Nemilov, S.V., A Thermodynamic Proof of the Inevitability of Low-Temperature Anomalies in Glass Properties and Genetic Predeterminancy of Dynamic Properties of Disordered Systems in Their Response to External Actions, Fiz. Khim. Stekla, 1994, vol. 20, no. 5, pp. 545-566 [Glass Phys. Chem. (Engl. transl.), 1994, vol. 20, no. 5, pp. 367-380].

    Google Scholar 

  35. Flegontov, Yu.A. and Nemilov, S.V., Specific Features of Heat Capacity of Glasses in the Framework of Thermodynamics for Genetically Disordered Systems: A Mathematical Solution to the Problem, Fiz. Khim. Stekla, 1996, vol. 22, no. 5, pp. 569-578 [Glass Phys. Chem. (Engl. transl.), 1996, vol. 22, no. 5, pp. 403-410].

    Google Scholar 

  36. Burkel, E., Peisl, J., Dorner, B., et al., Collective Dynamics in Water by High Energy Resolution Inelastic X-ray Scattering, Phys. Rev. Lett., 1995, vol. 75, no. 5, pp. 850-853.

    Google Scholar 

  37. Sette, F., Krish, M.H., Masciovecchio, et al., Dynamics of Glasses and Glass Forming Liquids Studied by Inelastic X-ray Scattering, Science (Washington, D.C., 1883-1998), vol. 280, pp. 1550-1555.

  38. Ruocco, G., Sette, F., Di Leonardo, R., et al., Nondynamic Origin of the High-Frequency Acoustic Attenuation in Glasses, Phys. Rev. Lett., 1999, vol. 83, no. 26, pp. 5583-5586.

    Google Scholar 

  39. Dell'Anna, R., Ruosso, G., Sampoli, M., and Viliani, G., High Frequency Sound Waves in Vitreous Silica, Phys. Rev. Lett., 1998, vol. 80, no. 6, pp. 1236-1239.

    Google Scholar 

  40. Gurevich, V.L., Parschin, D.A., and Schober, H.R., Theory of Low-Energy Raman-Scattering in Glasses, Phys. Rev. B: Condens. Matter, 1993, vol. 48, no. 22, pp. 161318-16331.

    Google Scholar 

  41. Bobovich, Ya.S., Recent Progress in Dynamic Raman Spectroscopy, Usp. Fiz. Nauk, 1992, vol. 162, no. 6, pp.-81-127.

    Google Scholar 

  42. Aleksandrov, E.B., Optical Manifestation of Interference of Nondegenerate Atomic States, Usp. Fiz. Nauk, 1972, vol. 107, no. 4, pp. 595-622.

    Google Scholar 

  43. Yan Yong-Xin, Cheng Lap-Tak, and Nelson, K.A., The Temperature Dependence of Relaxation Times in Glycerol, J. Chem. Phys., 1988, vol. 88, no. 10, pp. 6477-6486.

    Google Scholar 

  44. Bubel', O.N., Vyrko, S.A., Kislyakov, E.F., and Poklonskii, N.A., Totally Symmetric Vibrations of C60 Fullerene, Pis'ma Zh. Eksp. Teor. Fiz., 2000, vol. 71, no. 12, pp. 741-744.

    Google Scholar 

  45. Dzugutov, M., Sadigh, B., and Elliott, S.R., Medium-Range Order in a Simple Monatomic Liquid, J. Non-Cryst. Solids, 1998, vols. 232-234, pp. 20-24.

    Google Scholar 

  46. Majumdar, N.C., The Raman Spectra of CS2 at Different Temperatures, Indian J. Phys., 1959, vol. 23, no. 6, pp.-253-257.

    Google Scholar 

  47. Blatz, L.A., Low-Frequency Raman Lines from Liquid Benzene, Benzene Derivatives, and Other Organic Liquids, J. Chem. Phys., 1967, vol. 47, no. 2, pp. 841-849.

    Google Scholar 

  48. Sacci, C.A., Stimulated Scattering in the Far Wing of the Rayleigh Line and Low Frequency Raman Lines in Liquids, Opt. Commun., 1971, vol. 4, no. 1, pp. 83-87.

    Google Scholar 

  49. Mash, D.I., Morozov, D.I., Starunov, V.S., and Fabelinskii, I.L., Stimulated Rayleigh-Wing Raman Scattering, Pis'ma Zh. Eksp. Teor. Fiz., 1965, no. 1, pp. 41-45.

  50. Fabelinskii, I.L., Molekulyarnoe rasseyanie sveta (Molecular Light Scattering), Moscow: Nauka, 1965.

    Google Scholar 

  51. Sokolov, A.P., Galemczuk, R., Salce, B., et al., Low Temperature Anomalies in Strong and Fragile Glass Formers, Phys. Rev. Lett., 1997, vol. 78, no. 3, pp. 201-206.

    Google Scholar 

  52. Elliott, S.H., A Unified Model of the Low-Energy Vibrational Behaviour of Amorphous Solids, Europhys. Lett., 1992, vol. 19, no. 3, pp. 201-206.

    Google Scholar 

  53. Malinovsky, V.K. and Surovtsev, N.V., Inhomogeneity on the Nanometer Scale as a Universal Property of Glasses, Fiz. Khim. Stekla, 2000, vol. 26, no. 3, pp. 315-319 [Glass Phys. Chem. (Engl. transl.), 2000, vol. 26, no. 3, pp. 217-223].

    Google Scholar 

  54. Chuvaeva, T.I., Dymshits, O.S., Petrov, V.I., et al., Low-Frequency Raman Scattering and Small-Angle X-ray Scattering of Glasses Inclined to Phase Decomposition, J. Non-Cryst. Solids, 1999, vol. 243, pp. 244-250.

    Google Scholar 

  55. Malinovsky, V.K., Surovtsev, N.V., and Shebanin, A.P., Low-Frequency Raman Scattering in Orientationally Disordered Phase of a C60 Crystal, Pis'ma Zh. Eksp. Teor. Fiz., 2000, vol. 72, nos. 1-2, pp. 88-93.

    Google Scholar 

  56. Kohr, V.G. and Chumakov, A.T., The Theory of Incoherent Scattering of Synchrotron Radiation by Vibrating Nuclei in a Crystal, J. Phys.: Condens. Matter, 2002, vol. 14, no. 45, pp. 11875-11887.

    Google Scholar 

  57. Rueff, J.I., Joly, Y., Bartolome, F., et al., X-ray Raman Scattering from the Carbon K Edge in Polymerized C60: Experiment and Theory. J. Phys.: Condens. Matter, 2002, vol. 14, no. 45, pp. 11635-11641.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobovich, Y.S. Disordered Media and Materials: A Review of Recent Structural Data and Trends in Application of Raman Spectroscopy. Glass Physics and Chemistry 29, 331–344 (2003). https://doi.org/10.1023/A:1025160523822

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025160523822

Keywords

Navigation