Skip to main content
Log in

The Simulation of Transformation of Graphite to Diamond under Conditions of Dynamic Compression in a Conic Target

  • Published:
High Temperature Aims and scope

Abstract

Some results are given of numerical simulation of carbon loading in conic lead targets using aluminum impactors moving at a velocity of 4 km/s. Semiempirical wide-range equations of state for materials and a kinetic model of nonequlibrium transformation of graphite to diamond, calibrated against the available experimental data, are used in the calculations. The cumulative effect on the target axis of symmetry is investigated, as well as the effect of the sample unloading after the arrival of the release wave from the rear surface of the impactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. De Carli, P.S. and Jamieson, J.C., Science, 1961, vol. 133, no. 3467, p. 1821.

    Google Scholar 

  2. Alder, B.J. and Christian, R.H., Phys. Rev. Lett., 1961, vol. 7, no. 10, p. 367.

    Google Scholar 

  3. Pavlovskii, M.N. and Drakin, V.P., Pis'ma Zh. Eksp. Teor. Fiz., 1966, vol. 4, no. 5, p. 169.

    Google Scholar 

  4. Bundy, F.P. and Kasper, J.S., J. Chem. Phys., 1967, vol. 46, no. 9, p. 3437.

    Google Scholar 

  5. Duvall, G.E. and Graham, R.A., Rev. Mod. Phys., 1977, vol. 49, no. 3, p. 523.

    Google Scholar 

  6. Kurdyumov, A.V. and Pilyankevich, A.N., Fazovye pre-vrashcheniya v uglerode i nitride bora (Phase Transfor-mations in Carbon and Boron Nitride), Kiev: Naukova Dumka, 1979.

    Google Scholar 

  7. Gust, W.H., Phys. Rev. B, 1980, vol. 22, no. 6, p. 4744.

    Google Scholar 

  8. Gogulya, M.F., Fiz. Goreniya Vzryva, 1989, vol. 25, no. 1, p. 95.

    Google Scholar 

  9. Zhuk, A.Z., Ivanov, A.V., and Kanel', G.I., Teplofiz. Vys. Temp., 1991, vol. 29, no. 3, p. 486.

    Google Scholar 

  10. Erskine, D.J. and Nellis, W.J., J. Appl. Phys., 1992, vol. 71, no. 10, p. 4882.

    Google Scholar 

  11. Kurdyumov, A.V., Malogolovets, V.G., Novikov, N.V., et al., Polimorfnye modifikatsii ugleroda i nitrida bora (Polymorphous Modifications of Carbon and Boron Nitride), Moscow: Metallurgiya, 1994.

    Google Scholar 

  12. Bundy, F.P., Bassett, W.A., Weathers, M.S., et al., Carbon, 1996, vol. 34, no. 2, p. 141.

    Google Scholar 

  13. Vlodarchik, E. and Trebinski, R., Shock Waves, 1997, vol. 7, p. 231.

    Google Scholar 

  14. Zhugin, Yu.N., Krupnikov, K.K., and Tarzhanov, V.I., Khim. Fiz., 1999, vol. 18, no. 5, p. 96.

    Google Scholar 

  15. Pavlovskii, M.N., Khishchenko, K.V., Zhernokletov, M.V., et al., The Compressibility and Phase Transformations of Graphite and Diamond in Shock Waves, in Fizika ekstre-mal'nykh sostoyanii veshchestva-2001 (The Physics of Extreme States of Matter-2001), Fortov, V.E., et al., Eds., IPKhF RAN (Inst. of Problems in Chemical Physics, Russ. Acad. Sci.), 2001, p. 96.

  16. Khishchenko, K.V., Fortov, V.E., Lomonosov, I.V., et al., Shock Compression, Adiabatic Expansion and Multi-Phase Equation of State of Carbon, in Shock Compres-sion of Condensed Matter-2001, Furnish M.D., Thadhani, N.N., and Horie Y., New-York: AIP, 2002, p. 759.

    Google Scholar 

  17. Milyavskiy, V.V., Zhuk, A.Z., and Khishchenko, K.V., Novel Carbon Materials: Possibility of Shock-Wave Synthesis, in Defect and Diffusion Forum, 2002, vols. 208-209, p. 161.

    Google Scholar 

  18. Lomonosov, I.V., Fortov, V.E., Frolova, A.A., et al., Dokl. Ross. Akad. Nauk, 1998, vol. 360, no. 2, p. 199.

    Google Scholar 

  19. Vovchenko, V.I., Goncharov, A.S., Kas'yanov, Yu.S., et al., Pis'ma Zh. Eksp. Teor. Fiz., 1977, vol. 26, no. 9, p. 628.

    Google Scholar 

  20. Anisimov, S.I., Bespalov, V.E., Vovchenko, V.I., et al., Pis'ma Zh. Eksp. Teor. Fiz., 1980, vol. 31, no. 1, p. 67.

    Google Scholar 

  21. Zel'dovich, Ya.B. and Raizer, Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yav-lenii (Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena), Moscow: Nauka, 1966.

    Google Scholar 

  22. Kormer, S.B. and Urlin, V.D., Dokl. Akad. Nauk SSSR, 1960, vol. 131, no. 3, p. 542.

    Google Scholar 

  23. Kalitkin, N.N. and Kuz'mina, L.V., Tables of Thermody-namic Functions of Matter under Conditions of High Eneregy Density, Preprint of Inst. of Applied Mathemat-ics, USSR Acad. Sci., Moscow, 1975, no. 35.

  24. Bushman, A.V., Lomonosov, I.V., and Fortov, V.E., Uravneniya sostoyaniya metallov pri vysokikh plot-nostyakh energii (Equations of State for Metals under Conditions of High Energy Density), Chernogolovka: IKhFCh RAN (Inst. of Chemical Physics at Cher-nogolovka, Russ. Acad. Sci.), 1992.

    Google Scholar 

  25. Bushman, A.V., Lomonosov, I.V., and Fortov, V.E., Mod-els of Wide-Range Equations of State for Matter Under Conditions of High Energy Density, in Sov. Tech. Rev. B: Therm. Phys, Scheindlin, A.E. and Fortov, V.E., Eds., New York: Harwood Academic, 1993, vol. 5, p. 1.

    Google Scholar 

  26. Hultgren, R., Desai, P.D., Hawkins, D.T., et al., Selected Values of the Thermodynamic Properties of the Ele-ments, Metals Park: ASME, 1973.

    Google Scholar 

  27. Landau, L.D. and Lifshits, E.M., Statisticheskaya fizika. Ch. 1 (Statistical Physics. Part 1), Moscow: Nauka, 1995.

    Google Scholar 

  28. Touloukian, Y.S. and Buyco, E.H., Thermophysical Properties of Matter. TPRC Data Series. Vol. 13. Ther-mal Expansion. Nonmetalic Solids, New York: Plenum, 1977, p. 16.

    Google Scholar 

  29. Wunderlich, B. and Bauer, H., Heat Capacities of Linear Polymers, Berlin: Springer, 1970. Translated under the title Teploemkost' lineinykh polimerov, Moscow: Mir, 1972.

    Google Scholar 

  30. Bergman, G.A., Buchnev, L.M., Petrova, I.I., et al., Tablitsy standartnykh spravochnykh dannykh. Grafit kvazimonokristallicheskii UPV-1T. Izobarnaya teploem-kost', ental'piya i entropiya v diapazone temperatur 298.15...4000 K. GSSSD 25-90 (Tables of Standard Ref-erence Data. UPV-1T Quasi-Single-Crystal Graphite), Moscow: Izd. Standartov, 1991.

    Google Scholar 

  31. Buchnev, L.M., Smyslov, A.I., Dmitriev, I.A., et al., Dokl. Akad. Nauk SSSR, 1984, vol. 278, no. 5, p. 1109.

    Google Scholar 

  32. Fahy, S. and Louie, S.G., Phys. Rev. B, 1987, vol. 36, no. 3, p. 3373.

    Google Scholar 

  33. Lynch, R.W. and Drickamer, H.G., J. Chem. Phys., 1966, vol. 44, no. 1, p. 181.

    Google Scholar 

  34. Hanfland, M., Beister, H., and Syassen, K., Phys. Rev. B, 1989, vol. 39, no. 17, p. 12598.

    Google Scholar 

  35. Zhao, Y.X. and Spain, I.L., Phys. Rev. B, 1989, vol. 40, no. 2, p. 993.

    Google Scholar 

  36. Aleksandrov, I.V., Goncharov, A.F., Zisman, A.N., and Stishov, S.M., Zh. Eksp. Teor. Fiz., 1987, vol. 93, no. 2, p. 680.

    Google Scholar 

  37. McSkimin, H.J., Andreatch, P., and Glynn, P., J. Appl. Phys., 1972, vol. 43, no. 3, p. 985.

    Google Scholar 

  38. McSkimin, H.J. and Andreatch, P., J. Appl. Phys., 1972, vol. 43, no. 7, p. 2944.

    Google Scholar 

  39. Grimsditch, M.H. and Ramdas, A.K., Phys. Rev. B, 1975, vol. 11, no. 8, p. 3139.

    Google Scholar 

  40. Zouboulis, E.S., Grimsditch, M., Ramdas, A.K., and Rodriguez, S., Phys. Rev. B, 1998, vol. 57, no. 5, p. 2889.

    Google Scholar 

  41. Bundy, F.P., Bovenkerk, H.P., Strong, H.M., and Wen-torf, R.H., Jr., J. Chem. Phys., 1961, vol. 35, no. 2, p. 383.

    Google Scholar 

  42. Strong, H.M. and Hanneman, R.E., J. Chem. Phys., 1967, vol. 46, no. 9, p. 3668.

    Google Scholar 

  43. Strong, H.M. and Chrenko, R.M., J. Phys. Chem., 1971, vol. 75, no. 12, p. 1838.

    Google Scholar 

  44. Kennedy, C.S. and Kennedy, G.C., J. Geophys. Res., 1976, vol. 81, no. 14, p. 2467.

    Google Scholar 

  45. Bundy, F.P., J. Geophys. Res., 1980, vol. 85, no. 12, p. 6930.

    Google Scholar 

  46. Trunin, R.F., Simakov, G.V., Moiseev, B.N., et al., Zh. Eksp. Teor. Fiz., 1969, vol. 56, no. 4, p. 1169.

    Google Scholar 

  47. Pavlovskii, M.N., Fiz. Tverd. Tela, 1971, vol. 13, no. 3, p. 893.

    Google Scholar 

  48. LASL Shock Hugoniot Data, Marsh, S.P., Ed., Berkeley: University of California Press, 1980.

    Google Scholar 

  49. Bushman, A.V., Kanel', G.I., Ni, A.L., and Fortov, V.E., Teplofizika i dinamika intensivnykh impul'snykh vozde-istvii (The Thermophysics and Dynamics of Intense Pulsed Stimulation), Chernogolovka: OKhF AN SSSR (Inst. of Chemical Physics, USSR Acad. Sci.), 1988.

    Google Scholar 

  50. Nigmatulin, R.I., Dinamika mnogofaznykh sred (Dynamics of Multiphase Media), Moscow: Nauka, 1987.

    Google Scholar 

  51. Lomonosov, I.V., Fortov, V.E., Frolova, A.A., et al., Zh. Tekh. Fiz., vol. 73, no. 6, p. 66.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lomonosov, I.V., Fortov, V.E., Frolova, A.A. et al. The Simulation of Transformation of Graphite to Diamond under Conditions of Dynamic Compression in a Conic Target. High Temperature 41, 447–458 (2003). https://doi.org/10.1023/A:1025151513808

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025151513808

Keywords

Navigation