Skip to main content
Log in

Study of electrical and optical properties of Cd1 − x Zn x S thin films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thin films of Cd0.9Zn0.1S and CdS were prepared by thermal evaporation under vacuum of 10−6 Torr and with deposition rate of 60 nm/min. X ray diffraction studies confirm the hexagonal structure of both CdS and Cd0.9Zn0.1S films. The effect of heat treatments with or without CdCl2 enhances the grain size growth and improves the crystalline of the films. Moreover, the activation energy is decreased by heat treatment with or without CdCl2 for all thin films. The optical absorption coefficient of Cd0.9Zn0.1S thin films were determined from measured transmittance and reflectance in the wavelength range of 300 to 2500 nm. The optical absorption spectra reveal the existence of direct energy gap for these films. It was found that the optical energy gap decreases upon annealing or CdCl2 treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kuroyanagi, Thin Solid Films 249 (1994) 91.

    Google Scholar 

  2. J. Torres and G. Gordillo, ibid. 207 (1992) 231.

    Google Scholar 

  3. K. Subbaramaiah and V. Sundra raja, Sol.Energy Mater.Sol.Cells 32 (1994) 1.

    Google Scholar 

  4. J. A. Rodriguez and G. Gordillo, Sol.Energy Mater. 19 (1989) 421.

    Google Scholar 

  5. S. Yamaga, A. Yoshikawa and H. Kassai, J.Crystal Growth 99 (1990) 432.

    Google Scholar 

  6. M. P. Show, in “Handbook on Semiconductors” edited by T. S. Moss and C. Hilsum Vol. 4, Chap. 1 (Elsever Science Publishers, North-Holland Amsterdam, 1993).

    Google Scholar 

  7. P. J. Sebstian and M. Ocampo, Sol.Energy Mater.Sol.Cells 44 (1996) 1.

    Google Scholar 

  8. T. Edamura and J. Muto, J.Mater.Sci.Lett. 14 (1995) 889.

    Google Scholar 

  9. L. C. Burton and T. L. Hench, Appl.Phys. 29 (1976) 612.

    Google Scholar 

  10. F. El Akkad and M. Abdel-Naby, Sol.Energy Mater. 17 (1988) 143.

    Google Scholar 

  11. G. C. Morris and R. Vanderven, Sol.Energy Mater.Sol.Cells 26 (1992) 217.

    Google Scholar 

  12. T. Yokogawa, T. Ishikawa and J. L. Merz, J.Appl.Phys. 75 (1994) 2189.

    Google Scholar 

  13. U. Dolega, Z.Naturf. 18a (1963) 653.

    Google Scholar 

  14. P. Cherin, E. L. Lind and E. A. Davis, J.Electrochem.Soc.Solid State Sci. 117 (1970) 233.

    Google Scholar 

  15. B. D. Cullity, “Elements of X-Ray Diffraction” 2nd ed. (Addison Wesely, London, 1978).

    Google Scholar 

  16. D. W. Niles and F. S. Hasson, Progress in Photovoltaic 1 (1993) 132.

    Google Scholar 

  17. A. Many, Y. Goldstein and N. B. Crover, “Semiconductor Surfaces” (North Holand, Amsterdam, 1965) p. 307.

    Google Scholar 

  18. L. L. Kazmeriski, W. B. Berry and C. W. Allen, J.Appl.Phys. 43 (1972) 3515.

    Google Scholar 

  19. R. L. Petritz, Phys.Rev. 104 (1956) 1508.

    Google Scholar 

  20. J. W. Orton, B. J. Goldsmith, J. A. Capman and M. J. Powell, ibid. 53 (1982) 1602.

    Google Scholar 

  21. R. K. Ahernkiel, D. H. Levi, S. Johnston, W. Song, D. Mao and A. Fisher, in Proc. 26th IEEE Photovoltaic Conf. 535 (1997).

  22. J. Tang, L. Feng, D. Mao, W. Song, Y. Zhu and J. U. Trefny, Mater.Res.Soc.Symp.Proc. 426 (1996) 227.

    Google Scholar 

  23. L. F. Alen and H. B. Richard, “Fundamental of Solar Cells” (Academic Press, 1983).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redwan, M.A., Soliman, L.I., Aly, E.H. et al. Study of electrical and optical properties of Cd1 − x Zn x S thin films. Journal of Materials Science 38, 3449–3454 (2003). https://doi.org/10.1023/A:1025148817623

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025148817623

Keywords

Navigation