Skip to main content
Log in

Controlling the Turbulent Flow Past a Thick Airfoil by Means of Flow Enhancement in Vortex Cells Using Suction from Central Body Surfaces

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

On the basis of a numerical simulation of the turbulent steady-state flow past a thick airfoil with vortex cells built into the body contour, an unconventional technique for controlling flow separation by means of distributed suction from central bodies embedded in the cells is analyzed over a wide range of Reynolds numbers and suction velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. N. Shchukin, "The EKIP aircraft”, Grazhd. Aviatsyia, No. 6, 11 (1993).

  2. P. A. Baranov, S. A. Isaev, Yu. S. Prigorodov, and A. G. Sudakov, "Numerical simulation of laminar flow past a cylinder with passive and active vortex cells within the framework of the computation domain decomposition approach using of multi-layer grids," Pisma Zh. Tekhn. Fiz., 24, No. 8, 33 (1998).

    Google Scholar 

  3. P. A. Baranov, S. A. Isaev, Yu. S. Prigorodov, and A. G. Sudakov, "Calculation of the laminar flow past an airfoil with passive and active vortex cells on multiblock overlapping grids," Izv. Vuzov. Avia. Tekhn., No. 3, 330 (1999).

  4. A. E. Usachov, S. A. Isaev, B. N. Chetverushkin, and A. I. Leont'yev, "Numerical analysis of the effect of largescale vortex structures on the parameters of laminar and turbulent flows," in: Topical Problems of Acoustics, Hydrodynamics, and Industrial Aerodynamics [in Russian], Trudy TsAGI, No. 2634, 375 (1999).

  5. S. A. Isaev, Yu. S. Prigorodov, and A. G. Sudakov, "Numerical analysis of vortex cell efficiency in laminar and turbulent flows past a circular cylinder with embedded rotating bodies," Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 88 (2000).

  6. P. A. Baranov, S. A. Isaev, and A. G. Sudakov, "Numerical modeling of the induced vorticity effect on the von Kàrmàn vortex street downstream of a circular cylinder," Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2, 68 (2000).

  7. P. A. Baranov, S. A. Isaev, and A. E. Usachov, "Numerical analysis of the effect of rotating base cylinders on the unsteady wake downstream of a long body," Inzh.-Fiz. Zh., 73, No. 3, 606 (2000).

    Google Scholar 

  8. P. K. Chang, Control of Flow Separation, McGraw-Hill, New York (1976).

    Google Scholar 

  9. P. A. Baranov, S. A. Isaev, Yu. S. Prigorodov, and A. G. Sudakov, "Numerical simulation of the reduction in the drag of a cylinder with vortex cells in the presence of a turbulent boundary layer control system," Pisma Zh. Tekhn. Fiz., 24, No. 17, 16 (1998).

    Google Scholar 

  10. P. A. Baranov, S. A. Isaev, Yu. S. Prigorodov, and A. G. Sudakov, "Numerical analysis of the angle-of-attack effect on the incompressible turbulent flow past a thick airfoil with vortex cells," Inzh.-Fiz. Zh., 73, No. 4, 719 (2000).

    Google Scholar 

  11. S. A. Isaev, Yu. S. Prigorodov, and A. G. Sudakov, "Calculation of the low-velocity separation air flow past an airfoil with vortex cells," Inzh.-Fiz. Zh., 71, No. 6, 1116 (2000).

    Google Scholar 

  12. P. A. Baranov, S. A. Isaev, Yu. S. Prigorodov, and A. G. Sudakov, "Numerical simulation of the increase in the lift-drag ratio of airfoils due to suction in vortex cells," Inzh.-Fiz. Zh., 72, No. 3, 572 (1999).

    Google Scholar 

  13. S. A. Isaev, A. G. Sudakov, P. A. Baranov, and Yu. S. Prigorodov, "Supercirculation effect in the flow past a thick airfoil with vortex cells," Dokl. Ross. Akad. Nauk, 377, 198 (2001).

    Google Scholar 

  14. F. R. Menter, "Two-equation eddy-viscosity turbulence models for engineering applications," AIAA J., 32, 1598 (1994).

    Google Scholar 

  15. I. A. Belov and S. A. Isaev, Modeling Turbulent Flows. A Handbook [in Russian], Baltic Engineering State University, St. Petersburg (2001).

    Google Scholar 

  16. S. A. Isaev, N. A. Kudryavtsev, and A. G. Sudakov, "Numerical simulation of the incompressible viscous turbulent flow past bodies of curvilinear shape in the presence of a movable screen," Inzh.-Fiz. Zh., 71, No. 4, 618 (1998).

    Google Scholar 

  17. F. S. Lien, W. L. Chen, and M. A. Leschziner, "A multiblock implementation of a nonorthogonal, collocated finite volume algorithm for complex turbulent flows," Intern. J. Numer. Meth. Fluids, 23, No. 6, 567 (1996).

    Google Scholar 

  18. S. A. Isaev, A. I. Leont'yev, P. A. Baranov, Kh. T. Metov, and A. E. Usachov, "Numerical analysis of the viscosity effect on vortex dynamics in the laminar separation flow past a recess in a plane with allowance for its asymmetry," Inzh.-Fiz. Zh., 74, No. 2, 62 (2001).

    Google Scholar 

  19. S. A. Isaev, S. V. Guvernyuk, M. A. Zubin, and Yu. S. Prigorodov, "Numerical and physical modeling of a lowvelocity air flow in a channel with a circular vortex cell," Inzh.-Fiz. Zh., 73, No. 2, 220 (2000).

    Google Scholar 

  20. S. A. Isaev, P. A. Baranov, S. V. Guvernyuk, and M. A. Zubin, "Numerical and physical modeling of a turbulent flow in a divergent channel with a vortex cell," Inzh.-Fiz. Zh., 75, No. 2, 3 (2002).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranov, P.A., Isaev, S.A., Prigorodov, Y.S. et al. Controlling the Turbulent Flow Past a Thick Airfoil by Means of Flow Enhancement in Vortex Cells Using Suction from Central Body Surfaces. Fluid Dynamics 38, 387–396 (2003). https://doi.org/10.1023/A:1025141921752

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025141921752

Navigation