Skip to main content
Log in

Neuroendocrine Mechanisms of Development of Experimental Hyperandrogen-Induced Anovulation

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

An experimental model of hyperandrogen-induced anovulatory infertility (s.c. implantation of Silastic capsules containing testosterone into adult female rats) was used to study morphological, hormonal, and biochemical measures characterizing the state of the hypothalamo-hypophyseal-ovarian system. Impairments in functional androgen metabolism in the hypothalamus were seen, with decreases in the Luliberin sensitivity of the hypophysis, changes in the structure of estral cycles, and morphological changes in the ovaries; these findings are evidence for neuroendocrine disturbances in the control of ovulation. Flutamide, an experimental antiandrogen, led to partial normalization of the hormonal, biochemical, and morphological characteristics, as well as to recovery of fertility in females with anovulatory infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. G. Reznikov and T. I. Korpacheva, Probl. Éndokrinol., No. 6, 65–71 (1985).

  2. A. G. Reznikov, I. G. Akmaev, O. V. Fidelina, et al., Probl. Éndokrinol., 36, No. 3, 57–61 (1990).

    Google Scholar 

  3. D. E. Shilin, Probl. Éndokrinol., 38, No. 3, 31–35 (1992).

    Google Scholar 

  4. A. Balen, Probl. Éndokrinol., No. 4, 31–35 (1998).

  5. C. F. Baraghini, M. F. Celani, A. A. Zaidi, et al., J. Endocrinol. Invest., 7, Suppl. 3, 23–31 (1984).

    Google Scholar 

  6. F. Bayram, I. I. Muderris, Y. Sahin, and F. Kelestimur, Exptl. Clin. Endocrinol. Diabet., 107, No. 3, 195–197 (1999).

    Google Scholar 

  7. M. V. van Damme, D. M. Robertson, and E. Diczfalusy, Acta Endocrinol., 77, 655–663 (1974).

    Google Scholar 

  8. D. A. Ehrmann, R. B. Barnes, and R. L. Rosenfield, Endocrinol. Rev., 16, No. 3, 322–353 (1995).

    Google Scholar 

  9. L. Falsetti and A. Gambera, Fertil. Steril., 72, No. 1, 41–46 (1999).

    Google Scholar 

  10. C. Flamigni, S. Venturoli, B. Ravaioli, et al., The Ovary: Regulation, Dysfunction and Treatment, Amsterdam (1996), pp. 353–361.

  11. P. Harms and S. R. Ojeda, J. Appl. Physiol., 36, 391–392 (1974).

    Google Scholar 

  12. D. F. M. Loke, S. S. Ratman, and H. H. Goh, J. Neuroendocrinol., 4, No. 2, 211–215 (1992).

    Google Scholar 

  13. M. Marugo, D. Bernasconi, M. Meozzi, et al., J. Endocrinol. Invest., 17, No. 3, 195–199 (1994).

    Google Scholar 

  14. R. S. Rittmaster, Endocrinol. Metab. Clin. N. Amer., 28, No. 2, 409 (1999).

    Google Scholar 

  15. A. Weissman, A. Barash, and Z. Shoham, The Ovary: Regulation, Dysfunction and Treatment, Amsterdam (1996), pp. 425–436.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reznikov, A.G., Sinitsyn, P.V., Tarasenko, L.V. et al. Neuroendocrine Mechanisms of Development of Experimental Hyperandrogen-Induced Anovulation. Neurosci Behav Physiol 33, 773–776 (2003). https://doi.org/10.1023/A:1025141130241

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025141130241

Keywords

Navigation