Skip to main content
Log in

Collisional Relaxation of the Optically Induced Dichroism of Complex Molecules in a Gas Phase

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

The transformation of molecular rotation with rise of the buffer gas pressure is studied. The evolution of the optically induced anisotropy is measured for perylene and 1,4-di[2-(5-phenyloxazolyl)]benzene (POPOP) in pentane at high pressures. The orientational relaxation is shown to be governed not only by the buffer gas pressure (which determines the collision frequency), but also by the efficiency of the collisional angular momentum transfer. The orientational relaxation of perylene falls in between the predictions of the strong (J diffusion) and weak (Fokker–Planck equation) collision models. The situation is found to be closer to the latter, and four collisions with pentane are approximately necessary for randomization of the perylene angular momentum. The orientational relaxation of POPOP in the vicinity of the critical liquid–gas point is demonstrated to be almost independent of the pentane pressure in the range 45–130 atm, which is a manifestation of rotational diffusion. Generally, it was found that perylene rotates more freely than POPOPdeed, under the pentane pressure of the order of 50 atm, the rotation of POPOP is highly damped and is described by the diffusion equation. On the other hand, the orientational relaxation of perylene under pentane pressures of about 100 atm exhibits characteristic features arising due to inertial effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. I. Burshtein and S. I. Temkin, Spectroscopy of Molecular Rotations in Gases and Liquids, Cambridge University Press, Cambridge (1994).

    Google Scholar 

  2. A. B. Myers, M. A. Pereira, P. L. Holt, and R. M. Hochstrasser, J. Chem. Phys., 86, 5146-5155 (1986).

    Google Scholar 

  3. M. A. Pereira, P. E. Share, M. J. Sarisky, and R. M. Hochstrasser, J. Chem. Phys., 94, 2513-2522 (1991).

    Google Scholar 

  4. Y. Zhang, M. I. Sluch, M. M. Somoza, and M. A. Berg, J. Chem. Phys., 115, 4112-4231 (2001).

    Google Scholar 

  5. J. S. Baskin and A. H. Zewail, J. Phys. Chem. A, 105, 3680-3693 (2001).

    Google Scholar 

  6. N. A. Borisevich, E. V. Khoroshilov, I. V. Kryukov, A. V. Sharkov, A. P. Blokhin, and G. B. Tolstorozhev, Chem. Phys. Lett., 191, 225-231 (1992).

    Google Scholar 

  7. J. S. Baskin, M. Gupta, M. Chachisvilis, and A. H. Zewail, Chem. Phys. Lett., 275, 437-444 (1997).

    Google Scholar 

  8. J. S. Baskin, M. Chachisvilis, M. Gupta, and A. H. Zewail, J. Phys. Chem. A, 102, 4158-4171 (1998).

    Google Scholar 

  9. A. P. Blokhin, M. F. Gelin, O. V. Buganov, V. A. Dubovskii, S. A. Tikhomirov, and G. B. Tolstorozhev, Zh. Prikl. Spektrosk., 70, 66-72 (2003).

    Google Scholar 

  10. A. P. Blokhin and M. F. Gelin, Khim. Fiz., 16, 39-49; 50-59 (1997).

    Google Scholar 

  11. A. P. Blokhin and M. F. Gelin, Khim. Fiz., 13, No. 1, 14-20 (1994).

    Google Scholar 

  12. A. P. Blokhin and M. F. Gelin, J. Mol. Liq., 93, 47-50 (2001).

    Google Scholar 

  13. J. O'Dell and B. J. Berne, J. Chem. Phys., 63, 2376-2394 (1975).

    Google Scholar 

  14. M. F. Gelin, J. Phys. Chem. A, 104, 6150-6151 (2000).

    Google Scholar 

  15. N. A. Borisevich, S. P. Pliska, and V. A. Tolkachev, Dokl. Akad. Nauk SSSR, 261, No. 5, 1109-1114 (1986).

    Google Scholar 

  16. N. A. Borisevich, V. V. Gavrilyuk, V. A. Povedailo, and V. A. Tolkachev, Dokl. Akad. Nauk SSSR, 305, 1344-1346 (1989).

    Google Scholar 

  17. A. P. Blokhin and M. F. Gelin, Chem. Phys., 252, 323-335 (2000).

    Google Scholar 

  18. A. P. Blokhin and M. F. Gelin, Mol. Phys., 87, 455-468 (1996).

    Google Scholar 

  19. A. P. Blokhin, M. F. Gelin, I. I. Kalosha, V. V. Matylitsky, N. P. Erohin, M. V. Barashkov, and V. A. Tolkachev, Chem. Phys., 272, 69-76 (2001).

    Google Scholar 

  20. V. M. Zhdanov and M. Ya. Alievskii, Processes of Transport and Relaxation in Molecular Gases [in Russian], Moscow (1989).

  21. M. P. Allen, G. T. Evans, D. Frenkel, and B. M. Mulder, Adv. Chem. Phys., 83, 89-121 (1993).

    Google Scholar 

  22. D. Chandler, J. Chem. Phys., 62, 1358-1363 (1975).

    Google Scholar 

  23. S. P. Pliska and V. A. Tolkachev, Zh. Prikl. Spektrosk., 50, No. 5, 47-50 (1989).

    Google Scholar 

  24. V. A. Gaisenok and A. M. Sarzhevskii, Anisotropy of Absorption and Luminescence of Polyatomic Molecules [in Russian], Minsk (1986).

  25. J. Garcia de la Torre: Molecular Electro-Optics, Plenum, New York (1981).

    Google Scholar 

  26. L. D. Favro, Phys. Rev., 119, 53-62 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blokhin, A.P., Gelin, M.F., Buganov, O.V. et al. Collisional Relaxation of the Optically Induced Dichroism of Complex Molecules in a Gas Phase. Journal of Applied Spectroscopy 70, 378–384 (2003). https://doi.org/10.1023/A:1025129404915

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025129404915

Navigation