Studia Logica

, Volume 74, Issue 3, pp 441–468 | Cite as

On Alternative Geometries, Arithmetics, and Logics; a Tribute to Łukasiewicz

  • Graham Priest


The paper discusses the similarity between geometry, arithmetic, and logic, specifically with respect to the question of whether applied theories of each may be revised. It argues that they can - even when the revised logic is a paraconsistent one, or the revised arithmetic is an inconsistent one. Indeed, in the case of logic, it argues that logic is not only revisable, but, during its history, it has been revised. The paper also discusses Quine's well known argument against the possibility of “logical deviancy”.

Łukasiewicz revisability inconsistent arithmetics Traditional logic paraconsistency Quine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anderson, A., and N. Belnap, Entailment, Vol. I, Princeton University Press, 1975.Google Scholar
  2. [2]
    Borkowski, L., and J. SŁupecki, ‘The Logical Works of J. Łukasiewicz’, Studia Logica 8 (1958), 7-56.Google Scholar
  3. [3]
    Bell, E. T., Men of Mathematics, Pelican Books, 1953.Google Scholar
  4. [4]
    Benacerraf, P., and H. Putnam, Philosophy of Mathematics; Selected Readings, Oxford University Press, 1964.Google Scholar
  5. [5]
    CastaÑeda, H.-N., ‘Arithmetic and Reality’, Australasian Journal of Philosophy 37 (1959), 92-107; reprinted in Benacerraf and Putnam (1964), 404–71.Google Scholar
  6. [6]
    Dancy, R. M., Sense and Contradiction: a Study in Aristotle, Reidel, 1975.Google Scholar
  7. [7]
    Denyer, N., ‘Priest's Paraconsistent Arithmetic’, Mind 104 (1995), 567-75.Google Scholar
  8. [8]
    Dummett, M., Elements of Intuitionism, Oxford University Press, 1977.Google Scholar
  9. [9]
    Dummett, M., ‘Is Logic Empirical?’, ch. 16 of Truth and Other Enigmas, Duckworth, 1978.Google Scholar
  10. [10]
    Etchemendy, J., The Concept of Logical Consequence, Harvard University Press, 1990.Google Scholar
  11. [11]
    Feyerabend, P., Against Method, New Left Books, 1975.Google Scholar
  12. [12]
    Gasking, D. A. T., ‘Mathematics and the World’, Australasian Journal of Philosophy 18 (1940), 97-116; reprinted in Benacerraf and Putnam (1964), 390–403.Google Scholar
  13. [13]
    Goddard, L., ‘The Inconsistency of Aristotelian Logic?’, Australasian Journal of Philosophy 78 (2000), 434-7.Google Scholar
  14. [14]
    Goodstein, R. L., ‘Multiple Successor Arithmetics’, in J. Crossley and M. Dummett (eds.), Formal Systems and Recursive Functions, North Holland Publishing Company, 1965, 265-71.Google Scholar
  15. [15]
    Gray, J. J., ‘Euclidean and Non-Euclidean Geometry’, sect. 7.4 of I. Grattan-Guiness (ed.), Companion Encyclopedia of the History and Philosophy of Mathematical Sciences, Routledge, 1994.Google Scholar
  16. [16]
    Haack, S., Deviant Logic, Cambridge University Press, 1974.Google Scholar
  17. [17]
    Hinckfuss, I., ‘Instrumentalist Theories: Possibilities and Space and Time’, in P. Riggs (ed.), Natural Kinds, Laws of Nature and Scientific Methodology, Kluwer Academic Publishers, 1996, 187-209.Google Scholar
  18. [18]
    Kneale, W., and M. Kneale, The Development of Logic, Oxford University Press, 1962.Google Scholar
  19. [19]
    KotarbiŃski, T., ‘Jan Łukasiewicz's Works on the History of Logic’, Studia Logica 8 (1958), 57-62.Google Scholar
  20. [20]
    Kuhn, T., The Structure of Scientific Revolutions, Chicago University Press, 1962.Google Scholar
  21. [21]
    Łukasiewicz, J., Aristotle's Syllogistic, Clarendon Press, 1957.Google Scholar
  22. [22]
    Łukasiewicz, J., ‘Philosophische Bemargungen zu Mehrwertigen des Aussagenkalküls’, Comptes Rendus des Séances de la Societé des Sciences et des Lettres de Varsovie, Cl. iii, 23 (1930), 51-77, translated into English as ‘Philosophical Remarks on the Many-Valued Systems of Propositional Logic’, ch. 3 of McCall (1967).Google Scholar
  23. [23]
    McCall, S., Polish Logic 1920–1939, Oxford University Press, 1967.Google Scholar
  24. [24]
    Mortensen, C., Inconsistent Mathematics, Kluwer Academic Publishers, 1995.Google Scholar
  25. [25]
    Nerlich, G., The Shape of Space, Cambridge University Press, 1976.Google Scholar
  26. [26]
    PoincarÉ, H., La Science et L'Hypothèse, Paris: Ernest Flammmarian (no date); translated into English as Science and Hypothesis, Dover Publications, 1952.Google Scholar
  27. [27]
    Priest, G., ‘Two Dogmas of Quineanism’, Philosophical Quarterly 29 (1979), 289-301.Google Scholar
  28. [28]
    Priest, G., In Contradiction, Martinus Nijhoff, 1987.Google Scholar
  29. [29]
    Priest, G., ‘Classical Logic Aufgehoben’, ch. 4 of G. Priest, R. Routley and J. Norman (eds.), Paraconsistent Logic: Essays on the Inconsistent, Philosophia Verlag, 1989.Google Scholar
  30. [30]
    Priest, G., ‘Is Arithmetic Consistent?’, Mind 103 (1994), 337-49.Google Scholar
  31. [31]
    Priest, G., ‘Etchemendy and the Concept of Logical Validity’, Canadian Journal of Philosophy 25 (1995), 283-92.Google Scholar
  32. [32]
    Priest, G., ‘On Inconsistent Arithmetics: Reply to Denyer’, Mind 105 (1996), 649-59.Google Scholar
  33. [33]
    Priest, G., ‘Inconsistent Models of Arithmetic; I Finite Models’, Journal of Philosophical Logic 26 (1997), 223-35.Google Scholar
  34. [34]
    Priest, G., ‘What not? A Defence of a Dialetheic Account of Negation’, in D. Gabbay and H. Wansing (eds.), What is Negation?, Kluwer Academic Publishers, 1999.Google Scholar
  35. [35]
    Priest, G., ‘Inconsistent Models of Arithmetic; II, the General Case’, Journal of Symbolic Logic 65 (2000), 1519-29.Google Scholar
  36. [36]
    Prior, A., ‘Logic, Traditional’, in P. Edwards (ed.), Encyclopedia of Philosophy, Collier-MacMillan, 1967.Google Scholar
  37. [37]
    Putnam, H., ‘It Ain't Necessarily So’, Journal of Philosophy 59 (1962), 658-71; reprinted as ch. 15 of Putnam (1975).Google Scholar
  38. [38]
    Putnam, H., ‘Is Logic Empirical?’, in R. Cohen and M. Wartofsky (eds.), Boston Studies in the Philosophy of Science, Vol. V, Reidel, 1969; reprinted under the title ‘The Logic of Quantum Mechanics’ as ch. 10 of Putnam (1975).Google Scholar
  39. [39]
    Putnam, H., Mathematics, Matter and Method; Philosophical Papers, Vol. I, Cambridge University Press, 1975.Google Scholar
  40. [40]
    Quine, W. V., ‘Two Dogmas of Empiricism’, Philosophical Review 60 (1951), 20-43; reprinted in From a Logical Point of View, Harvard University Press, 1953.Google Scholar
  41. [41]
    Quine, W. V., Word and Object, MIT Press, 1960.Google Scholar
  42. [42]
    Quine, W. V., Philosophy of Logic, Prentice Hall, 1970.Google Scholar
  43. [43]
    Rescher, N., Many-Valued Logic, McGraw Hill, 1969.Google Scholar
  44. [44]
    Ryle, G., ‘Formal and Informal Logic’, ch. 8 of Dilemmas, Cambridge University Press, 1954.Google Scholar
  45. [45]
    Slater, B. H., ‘Paraconsisent Logic?’, Journal of Philosophical Logic 24 (1995), 451-4.Google Scholar
  46. [46]
    SobociŃski, B., ‘In Memoriam Jan Łukasiewicz’, Philosophical Studies (Dublin) 6 (1956), 3-49.Google Scholar
  47. [47]
    Strawson, P., Introduction to Logical Theory, Methuen and Co., 1952.Google Scholar
  48. [48]
    Tarski, A., ‘On the Concept of Logical Consequence’, ch. 14 of Logic, Semantics and Metamathematics, Oxford University Press, 1956.Google Scholar
  49. [49]
    Van Bendegem, J.-P., Finite, Empirical Mathematics; Outline of a Model, Rijksuniversiteit Gent, 1987.Google Scholar
  50. [50]
    Wright, C., Frege's Conception of Numbers as Objects, Aberdeen University Press, 1983.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Graham Priest
    • 1
  1. 1.Department of PhilosophyUniversity of MelbourneUSA

Personalised recommendations