Skip to main content
Log in

The Role of Wave–Particle Interactions in the Dynamics of Plasma in the Polar Cusp

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

This paper presents a review of observations of low-frequency plasma waves together with plasma particles performed by Interball 1 and its subsatellite Magion 4 and by the Freja satellite in different cusp regions. The detailed study of the wave spectra together with the electron distribution functions indicates the correlation between the presence of lower-hybrid waves and of particles with energies higher than in the surrounding space. These experimental facts suggest that strong coupling between waves and particles is responsible for plasma heating. The Freja data with a high time resolution allow identification of the process of energy transport via a cascade from low frequency waves to high frequency waves accompanied by electron energization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Pottelette, R., Malingre, M., Dulouloz, N., Aparicio, B., et al., High Frequency Waves in the Cusp/Cleft Regions, J. Geophys. Res., 1990, vol. 95, p. 5957.

    Google Scholar 

  2. Błęcki, J., Rothkaehl, H., Kossacki, K., et al., ULF–ELF–VLF–HF Plasma Wave Observations in the Polar Cusp Onboard High and Low Altitude Satellites, Phys. Scripta, 1998, vol. 75, pp. 259–263.

    Google Scholar 

  3. Błęcki, J., Kossacki, K., Wronowski, R., Nemecek, Z., Safránková, J., Savin, S., Sauvaud, J.A., Romanov, S., Juchniewicz, J., Klimov, S., Triska, P., Smilauer, J., and Simunek, J., Low Frequency Plasma Waves Observed in the Outer Polar Cusp, Adv. Space Res., 1999, vol. 23, no. 10, p. 1765.

    Google Scholar 

  4. Błęcki, J., Gadomski, S., Juchniewicz, J., Korepanov, V., et al., SAS Wave Experiment on Board Magion 4, Ann. Geophys., 1997, vol. 15, p. 528.

    Google Scholar 

  5. Klimov, S. et al., ASPI Experiment: Measurements of Fields and Waves Onboard the Interball 1 Spacecraft, Ann. Geophys., 1997, vol. 15, pp. 514–527.

    Google Scholar 

  6. Smith, M.F. and Lockwood, M., Earth's Magnetospheric Cusps, Rev. Geophys., 1996, vol. 34, p. 233.

    Google Scholar 

  7. Rothkaehl, H., Błęcki, J., Stasiewicz, K., and Ericson, A., HF–VLF Plasma Waves Excitation during Geomagnetic Storm in the Polar Cusp Region, in The Solar Wind–Magnetosphere System, Biernat, H.K., Farrugia, C.J., and Vogl, D.F., Eds., Wien, 2000, pp. 209–217.

  8. Haerendel, G., Microscopic Plasma Processes Related to Reconnection, J. Atmos. Terr. Phys., 1978, vol. 40, pp.-343–353.

    Google Scholar 

  9. Treumann, R.A., Labelle, J., and Bauer, T.M., Diffusion Processes: an Observational Perspective, in Physics of the Magnetopause, Song, P., Sonnerup, B.U.O., and Thomsen, M.F., Eds., American Geophysical Union, 1995, p. 331.

  10. Savin, S.P., Romanov, S.A., Fedorov, A.O., Zelenyi, L., Klimov, S.I., et al., The Cusp/Magnetosheath Interface on May 29, 1996: Interball 1 and Polar Observations, Geophys. Res. Lett., 1998, vol. 25, pp. 2963–2966.

    Google Scholar 

  11. Savin, S.P., Borodkova, N.L., Budnik, E.Yu., Fedorov, A.O., Klimov, S.I., et al., Interball Tail Probe Measurements in Outer Cusp and Boundary Layers, in Geospace Mass and Energy Flow: from the International Solar–Terrestrial Physics Program, Horwitz, J.L., Gallagher, D.L., and Peterson, W.K., Eds., Geophysical Monograph 104, Washington, D.C.: American Geophysical Union, 1998, pp. 25–44.

    Google Scholar 

  12. Chen, J., Fritz, T.A., Sheldon, R.B., et al., Cusp Energetic Particle Events: Implications for a Major Acceleration Region in Magnetosphere, J. Geophys. Res., 1998, vol. 103, pp. 69–78.

    Google Scholar 

  13. Pissarenko, N.F., Kirpichev, I., Lutsenko, V., Savin, S., etal., Cusp Energetic Particles, Observed by Interball Tail Probe in 1996, Phys. Chem. Earth, 2001, vol. 26, pp.-241–245.

    Google Scholar 

  14. Pickett, J.S., Gurnett, D.A., Manietti, J.D., et al., Plasma Waves Observed during Cusp Energetic Particle Events, Adv. Space Res., 1999, vol. 24, no. 1, p. 23.

    Google Scholar 

  15. Romanov, V., Savin, S., Klimov, S., Romanov, S., Yermolaev, Yu., Błęcki, J., and Wronowski, R., Magnetic Turbulence at the Magnetopause, Plasma Penetration, J. Tech. Phys., 1999, vol. XL, no. 1, Suppl., p. 329.

    Google Scholar 

  16. Savin, S., Zelenyi, L.M., Maynard, N.C., Sandahl, I., Kawano, H., et al., Multi-spacecraft Tracing of Turbulent Boundary Layer, Adv. Space Res., 2002, vol. 30, no. 12, pp. 2821–2830.

    Google Scholar 

  17. Savin, S., Błęcki, J., Pissarenko, N., Lutsenko, V., Kirpichev, I., et al., Accelerated Particles from Turbulent Boundary Layer, Adv. Space Res., 2002, vol. 30, no. 7, pp. 1723–1730.

    Google Scholar 

  18. Woch, J. and Lundin, R., Magnetosheath Plasma Precipitation in the Polar Cusp and Its Control by the Interplanetary Magnetic Field, J. Geophys. Res., 1992, vol. 97, no. A2, pp. 1421–1430.

    Google Scholar 

  19. Yamauchi, M. and Lundin, R., The Wave-Assisted Cups Model: Comparison to Low-Latitude Observations, Phys. Chem. Earth, 1997, vol. 22, pp. 729–734.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blecki, J., Savin, S., Rothkaehl, H. et al. The Role of Wave–Particle Interactions in the Dynamics of Plasma in the Polar Cusp. Cosmic Research 41, 332–339 (2003). https://doi.org/10.1023/A:1025123307757

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025123307757

Keywords

Navigation