Skip to main content
Log in

Genetic Susceptibility in Type 1 Diabetes and its Associated Autoimmune Disorders

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Petterson A, Jacob H, Lernmark Å. Lessons from the animal models: The BB rat. In: Palmer JP, ed. Prediction, Prevention, and Genetic Counseling in IDDM. Chichester, England: Wiley, 1996:181– 201.

    Google Scholar 

  2. Markholst H, Klaff LJ, Kloppel G, Lernmark A, Mordes JP, Palmer J. Lack of systematically found insulin autoantibodies in spontaneously diabetic BB rats. Diab 1990;39(6):720–727.

    Google Scholar 

  3. Hornum L, Jackerott M, Markholst H. The rat T-cell lymphopenia resistance gene (Lyp) maps between D4Mit6 and Npy on RN04. Mamm Genome 1995;6(5):371–372.

    Google Scholar 

  4. Hornum L, Markholst H. A sequence-ready PACcontig of a 550-kb region on rat chromosome 4 including the diabetes susceptibility gene Lyp. Genomics 2000;69(3):305–313.

    Google Scholar 

  5. Daheron L, Zenz T, Siracusa LD, Brenner C, Calabretta B. Molecular cloning of Ian4: A BCR/ABL-induced gene that encodes an outer membrane mitochondrial protein with GTP-binding activity. Nucleic Acids Res 2001;29(6):1308–1316.

    Google Scholar 

  6. Lam E, Kato N, Lawton M. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 2001;411(6839):848–853.

    Google Scholar 

  7. MacMurray AJ, Moralejo DH, Kwitek AE, Rutledge EA, Van Yserloo B, Gohlke P, Speros SJ, Snyder B, Schaefer J, Bieg S, Jiang J, Ettinger RA, Fuller J, Daniels TL, Pettersson A, Orlebeke K, Birren B, Jacob HJ, Lander ES, Lernmark A. Lymphopenia in the BB rat model of Type 1 diabetes is due to a mutation in a novel immune-associated nucleotide (Ian)-related gene. Genome Res 2002;12(7):1029–1039.

    Google Scholar 

  8. Groen H, Klatter FA, Brons NH, Mesander G, Nieuwenhuis P, Kampinga J. Abnormal thymocyte subset distribution and differential reduction of CD4+ and CD8+ T cell subsets during peripheral maturation in diabetes-prone BioBreeding rats. J Immunol 1996;156(3):1269–1275.

    Google Scholar 

  9. Doukas J, Mordes JP, Swymer C, Niedzwiecki D, Mason R, Rozing J, Rossini AA, Greiner DL. Thymic epithelial defects and predisposition to autoimmune disease in BB rats. Am J Pathol 1994;145(6):1517–1525.

    Google Scholar 

  10. Whalen BJ, Weiser P, Marounek J, Rossini AA, Mordes JP, Greiner DL. Recapitulation of normal and abnormal BioBreeding rat T cell development in adult thymus organ culture. J Immunol 1999;162(7):4003–4012.

    Google Scholar 

  11. Komeda K, Noda M, Terao K, Kuzuya N, Kanazawa M, Kanazawa Y. Establishment of two substrains, diabetes-prone and nondiabetic, from Long-Evans Tokushima Lean (LETL) rats. Endocr J 1998;45(6):737–744.

    Google Scholar 

  12. Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T. New inbred strain of Long-Evans Tokushima lean rats with IDDM without lymphopenia. Diab 1991;40(11):1375–1381.

    Google Scholar 

  13. Yokoi N, Kanazawa M, Kitada K, Tanaka A, Kanazawa Y, Suda S, Ito H, Serikawa T, Komeda K. A non-MHC locus essential for autoimmune type I diabetes in the Komeda diabetes-prone rat. J Clin Invest 1997;100:2015–2021.

    Google Scholar 

  14. Yokoi N, Komeda K, Wang HY, Yano H, Kitada K, Saitoh Y, Seino Y, Yasuda K, Serikawa T, Seino S. Cblb is a major susceptibility gene for rat type 1 diabetes mellitus. Nat Genet 2002;31(4):391– 394.

    Google Scholar 

  15. Wicker LS, Todd JA, Peterson LB. Genetic control of autoimmune diabetes in the NOD mouse. Ann Rev Immunol 1995;13:179–200.

    Google Scholar 

  16. Todd JA, Wicker LS. Genetic protection from the inflammatory disease type 1 diabetes in humans and animal models. Immunity 2001;15(3):387–395.

    Google Scholar 

  17. Wicker LS, Miller BJ, Coker LZ, McNally SE, Scott S, Mullen Y, Appel MC. Genetic control of diabetes and insulitis in the nonobese diabetic (NOD) mouse. J Exp Med 1987;165:1639–1654.

    Google Scholar 

  18. Hattori M, Buse JB, Jackson RA, Glimcher L, Dorf ME, Minami M, Makino S, Moriwaki K, Kuzuya H, Imura H, Strauss WM, Seidman JG, Eisenbarth GS. The NOD mouse: Recessive diabetogenic gene within the major histocompatibility complex. Science 1986;231(4739):733–735.

    Google Scholar 

  19. Miyazaki T, Uno M, Uehira M, Kikutani H, Kishimoto T, Kimoto M, Nishimoto H, Miyazaki J, Yamamura K. Direct evidence for the contribution of the unique I-ANOD to the development of insulitis in non-obese diabetic mice. Nature 1990;345(6277):722–724.

    Google Scholar 

  20. Moriyama H, Wen L, Abiru N, Liu E, Yu L, Miao D, Gianani R, Wong FS, Eisebarth GS. Induction and acceleration of insulitis/diabetes in mice with a viral mimic (polyinosinicpolycytidylic acid) and an insulin self-peptide. Proc Natl Acad Sci USA 2002;99(8):5539–5544.

    Google Scholar 

  21. Martin N, Boomsma D, Machin G. A twin-pronged attack on complex traits. Nat Genet 1997;17:387–392.

    Google Scholar 

  22. Phillips DIW. Twin studies in medical research: Can they tell us whether disease are genetically determined? Lancet 1993;341:1008–1009.

    Google Scholar 

  23. Smith C. Concordance in twins: Methods and interpretation. Am J Hum Genet 1974;26(4):454–466.

    Google Scholar 

  24. Redondo MJ, Yu L, Hawa M, Mackenzie T, Pyke DA, Eisenbarth GS, Leslie RD. Heterogenity of type 1 diabetes: Analysis of monozygotic twins in Great Britain and the United States. Diabetol 2001;44(3):354–362.

    Google Scholar 

  25. Johnston C, Pyke DA, Cudworth AG, Wolf E. HLA-DR typing in identical twins with insulin-dependent diabetes: Difference between concordant and discordant pairs. BMJ 1983;286:253–255.

    Google Scholar 

  26. Verge CF, Gianani R, Yu L, Pietropaolo M, Smith T, Jackson RA, Soeldner JS, Eisenbarth GS. Late progression to diabetes and evidence for chronic β-cell autoimmunity in identical twins of patients with type I diabetes. Diab 1995;44(10):1176–1179.

    Google Scholar 

  27. Ahonen P, Myllarniemi S, Sipila I, Perheentupa J. Clinical variation of autoimmune polyendocrinopathy–candidiasis– ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med 1990;322(26):1829–1836.

    Google Scholar 

  28. Perheentupa J, Miettinen A. Autoimmune polyendocrinopathycandidiasis-ectodermal dystrophy. In: Eisenbarth GS, ed. Endocrine and Organ Specific Autoimmunity. Austin: R. G. Landes Company, 1999:19–40.

    Google Scholar 

  29. Owerbach D, Lernmark Å, Platz P, Ryder LP, Rask L, Peterson PA, Ludvigsson J. HLA-D region ß-chain DNA endonuclease fragments differ between HLA-DR identical healthy and insulindependent diabetic individuals. Nature 1983;303:815–817.

    Google Scholar 

  30. Aaltonen J, Björses P, Sandkuijl L, Perheentupa J, Peltonen L. An autosomal locus causing autoimmune disease: Autoimmune polyglandular disease type I assigned to chromosome 21. Nat Genet 1994;8(1):83–87.

    Google Scholar 

  31. Aaltonen J, Björses P, Perheentupa J, Horelli-Kuitunen N, Palotie A, Peltonen L, Lee YS, Francis F, Hennig S, Thiel C, Lehrach H, Yaspo M-L. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet 1997;17(4):399–403.

    Google Scholar 

  32. Gylling M, Tuomi T, Bjorses P, Kontiainen S, Partanen J, Christie MR, Knip M, Perheentupa J, Miettinen A. ss-Cell Autoantibodies, Human Leukocyte Antigen II Alleles, and Type 1 Diabetes in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy. J Clin Endocrinol Metab 2000;85(12):4434–4440.

    Google Scholar 

  33. Patel DD. Escape from tolerance in the human X-linked autoimmunity-allergic disregulation syndrome and the Scurfy mouse. J Clin Invest 2001;107(2):155–157.

    Google Scholar 

  34. Baud O, Goulet O, Canioni D, Le Deist F, Radford I, Rieu D, Dupuis-Girod S, Cerf-Bensussan N, Cavazzana-Calvo M, Brousse N, Fischer A, Casanova JL. Treatment of the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) by allogeneic bone marrow transplantation. N Engl J Med 2001;344(23):1758–1762.

    Google Scholar 

  35. Johnson AH, Hurley CK, Hartzman RJ, Alper CA, Yunis EJ. HLA: The major histocompatibility complex of man. In: Henry JB, ed. Clinical Diagnosis &;; Management by Laboratory Methods. Philadelphia: WB Saunders, 1991.

    Google Scholar 

  36. Noble JA, Valdes AM, Cook M, Klitz W, Thomson G, Erlich HA. The role of HLA class II genes in insulin-dependent diabetes mellitus: Molecular analysis of 180 Caucasian, multiplex families. Am J Hum Genet 1996;59:1134–1148.

    Google Scholar 

  37. Deschamps I, Lestradet H, Bonaiti C, Schmid M, Busson M, Benajam A, Marcelli-Barge A, Hors J. HLA genotype studies in juvenile insulin-dependent diabetes. Diabetol 1980;19(3):189–193.

    Google Scholar 

  38. Rotter JI, Anderson CE, Rubin R, Congleton JE, Terasaki PI, Rimoin DL. HLA genotypic study of insulin-dependent diabetes. The excess of DR3/DR4 heterozygotes allows rejection of the recessive hypothesis. Diab 1983;32:169.

    Google Scholar 

  39. Wolf E, Spencer KM, Cudworth AG. The genetic susceptibility to type I (insulin dependent) diabetes: Analysis of the HLA-DR association. Diabetol 1983;24(4):224–230.

    Google Scholar 

  40. Thomson G, Robinson WP, Kuhner MK, Joe S, MacDonald MJ, Gottschall JL, Barbosa J, Rich SS, Bertrams J, Baur MP, Partanen J, Tait B, Schober E, Mayr WR, Ludvigsson J, Lindblom B, Farid NR, Thompson C, Deschamps I. Genetic heterogeneity, modes of inheritance, and risk estimates for a joint study of Caucasians with insulin-dependent diabetes mellitus. Am J Hum Genet 1988;43:799–816.

    Google Scholar 

  41. Todd JA, Bell JI, McDevitt HO. HLA-DQB gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 1987;329(6140):599–604.

    Google Scholar 

  42. Khalil I, Deschamps I, Lepage V, Al-Daccak R, Degos L, Hors J. Dose effect of cis-and trans-encoded HLA-DQ alpha beta heterodimers in IDDM susceptibility. Diab 1992;41(3):378–384.

    Google Scholar 

  43. Nepom BS, Schwartz D, Palmer JP, Nepom GT. Transcomplementation of HLA genes in IDDM. Diab 1987;36:114–117.

    Google Scholar 

  44. Bellgrau D, Pugliese A. NOD mouse and BB rat: Genetics and immunologic function. In: Eisenbarth GS, Lafferty KJ, eds. Type I Diabetes: Molecular, Cellular, and Clinical Immunology. New York, New York: Oxford University Press, 1996:53–75.

    Google Scholar 

  45. Morel PA, Dorman JS, Todd JA, McDevitt HO, Trucco M. Aspartic acid at position 57 of the HLA-DQ beta chain protects against type I diabetes: A family study. Proc Natl Acad Sci USA 1988;85(21):8111–8115.

    Google Scholar 

  46. Kwok WW, Domeier ME, Johnson ML, Nepom GT, Koelle DM. HLA-DQB1 codon 57 is critical for peptide binding and recognition. J Exp Med 1996;183(3):1253–1258.

    Google Scholar 

  47. Sanjeevi CB, DeWeese C, Landin-Olsson M, Kockum I, Dahlquist G, Lernmark Å, Lybrand TP. Analysis of critical residues of HLADQ 6molecules in insulin-dependent diabetes mellitus. Tissue Antigens 1997;50(1):61–65.

    Google Scholar 

  48. Hoover ML, Marta RT. Molecular modelling of HLA-DQ suggests a mechanism of resistance in type I diabetes. Scand J Immunol 1997;45:193–202.

    Google Scholar 

  49. Khalil I, d'Auriol L, Gobet M, Morin L, Lepage V, Deschamps I, Park MS, Degos L, Galibert F, Hors J. A combination of HLADQ beta Asp 57-negative and HLA-DQα Arg 52 confers susceptibility to insulin-dependent diabetes mellitus. J Clin Invest 1990;85(4):1315–1319.

    Google Scholar 

  50. Awata T, Kuzuya T, Matsuda A, Iwamoto Y, Kanazawa Y, Okuyama M, Juji T. High frequency of aspartic acid at position 57 of HLADQ B-chain in Japanese IDDM patients and nondiabetic subjects. Diab 1990;39(2):266–269.

    Google Scholar 

  51. Ronningen KS, Iwe T, Halstensen TS, Spurkland A, Thorsby E. The amino acid at position 57 of the HLA-DQ beta chain and susceptibility to develop insulin-dependent diabetes mellitus. Hum Immunol 1989;26(3):215–225.

    Google Scholar 

  52. Todd JA, Mijovic C, Fletcher J, Jenkins D, Bradwell AR, Barnett AH. Identification of susceptibility loci for insulindependent diabetes mellitus by trans-racial gene mapping. Nature 1989;338(6216):587–589.

    Google Scholar 

  53. Jenkins D, Mijovic C, Fletcher J, Jacobs KH, Bradwell AR, Barnett AH. Identification of susceptibility loci for type I (insulindependent) diabetes by trans-racial gene mapping. Diabetol 1990;33(7):387–395.

    Google Scholar 

  54. Mijovic CH, Barnett AH, Todd JA. Genetics of diabetes. Transracial gene mapping studies. [Review]. Baillieres Clin Endocrinol Metab 1991;5(2):321–340.

    Google Scholar 

  55. Mijovic CH, Jenkins D, Jacobs KH, Penny MA, Fletcher JA, Barnett AH. HLA-DQA1 and-DQB1 alleles associated with genetic susceptibility to IDDM in a black population. Diab 1991;40(6):748–753.

    Google Scholar 

  56. Ronningen KS, Spurkland A, Tait BD, Drummond B, Lopez-Larrea C, Baranda FS, et al. HLA class II associations in insulin-dependent diabetes mellitus among blacks, caucasoids, and japanese. New York, NY: Oxford University Press, 1991:713–722.

    Google Scholar 

  57. Ronningen KS, Spurkland A, Iwe T, Vartdal F, Thorsby E. Distribution of HLA-DRB1,-DQA1 and-DQB1 alleles and DQA1-DQB1 genotypes among Norwegian patients with insulin-dependent diabetes mellitus. Tissue Antigens 1991;37(3):105–111.

    Google Scholar 

  58. Penny MA, Jenkins D, Mijovic CH, Jacobs KH, Cavan DA, Yeung VT, Cockram CS, Hawkins BR, Fletcher JA, Barnett AH. Susceptibility to IDDM in a Chinese population. Role of HLA class II alleles. Diab 1992;41(8):914–919.

    Google Scholar 

  59. Ikegami H, Kawaguchi Y, Yamato E, Kuwata S, Tokunaga K, Noma Y, Shima K, Ogihara T. Analysis by the polymerase chain reaction of histocompatibility leucocyte antigen-DR9-linked susceptibility to insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1992;75(5):1381–1385.

    Google Scholar 

  60. Sanjeevi CB, Zeidler A, Shaw S, Rotter J, Nepom GT, Costin G, Raffel L, Eastman S, Kockum I, Wassmuth R, Lernmark Å. Analysis of HLA-DQA1 and-DQB1 genes in Mexican Americans with insulin-dependent diabetes mellitus. Tissue Antigens 1993;42:72–77.

    Google Scholar 

  61. Pugliese A. Genetic protection from insulin-dependent diabetes mellitus. Diab Nutr Metab, in press.

  62. Baisch JM, Weeks T, Giles R, Hoover M, Stastny P, Capra JD. Analysis ofHLA-DQgenotypes and susceptibility in insulin-dependent diabetes mellitus. N Engl J Med 1990;322(26):1836–1841.

    Google Scholar 

  63. Sorrentino R, DeGrazia U, Buzzetti R, Nistico L, Iannicola C, Costanzi S, Tosi R. An explanation for the neutral effect of DR2 on IDDM susceptibility in central Italy. Diab 1992;41:904–908.

    Google Scholar 

  64. Kockum I, Wassmuth R, Holmberg E, Michelsen B, Lernmark A. HLA-DQ primarily confers protection and HLA-DR susceptibility in type I (insulin-dependent) diabetes studied in population-based affected families and controls. Am J Hum Genet 1993;53(1):150– 167.

    Google Scholar 

  65. Hagopian WA, Sanjeevi CB, Kockum I, Landin-Olsson M, Karlsen AE, Sundkvist G, Dahlquist G, Palmer J, Lernmark Å. Glutamate decarboxylase-, insulin-, and islet cell-antibodies and HLA typing to detect diabetes in a general population-based study of Swedish children. J Clin Invest 1995;95:1505–1511.

    Google Scholar 

  66. Caillat-Zucman S, Djilali-Saiah I, Timsit J, Bonifacio E, Sepe V, Shattack M, et al. Insulin dependent diabetes mellitus (IDDM) joint report. 12th International Histocompatibility Workshop Study. In: Charron D, ed. Genetic Diversity of HLA. Functional and Medical Implications. Paris: EDK, 1997:389–398.

    Google Scholar 

  67. Erlich HA, Zeidler A, Chang J, Shaw S, Raffel LJ, Klitz W, Beshkov Y, Costin G, Pressman S, Bugawan T, Rotte JL. HLA class II alleles and susceptibility and resistance to insulin dependent diabetes mellitus inMexican-American families. Nat Genet 1993;3(4):358– 364.

    Google Scholar 

  68. Wen L, Wong FS, Tang J, Chen NY, Altieri M, David C, Flavell R, Sherwin R. In vivo evidence for the contribution of human histocompatibility leukocyte antigen (HLA)-DQ molecules to the development of diabetes. J Exp Med 2000;191(1):97–104.

    Google Scholar 

  69. Schmidt D, Amrani A, Verdaguer J, Bou S, Santamaria P. Autoantigen-independent deletion of diabetogenic CD4+ thymocytes by protective MHC class II molecules. J Immunol 1999;162(8):4627–4636.

    Google Scholar 

  70. Pugliese A, Zeller M, Fernandez A, Zalcberg LJ, Bartlett RJ, Ricordi C, Pietropaolo M, Eisenbarth GS, Bennett ST, Patel DD. The insulin gene is transcribed in the human thymus and transcription levels correlate with allelic variation at the INSVNTR-IDDM2 susceptibility locus for type I diabetes. Nat Genet 1997;15:293–297.

    Google Scholar 

  71. Vafiadis P, Bennett ST, Todd JA, Nadeau J, Grabs R, Goodyer CG, Wickramasinghe S, Colle E, Polychronakos C. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 1997;15:289–292.

    Google Scholar 

  72. Redondo MJ, Kawasaki E, Mulgrew CL, Noble JA, Erlich HA, Freed BM, Lie BA, Thorsby E, Eisenbarth GS, Undlien DE, Ronningen KS. DR and DQ associated protection from type 1 diabetes: Comparison of DRB1*1401 and DQA1*0102-DQB1*0602. J Clin Endocrinol Metab 2000;85(10):3793–3797.

    Google Scholar 

  73. Robinson WP, Barbosa J, Rich SS, Thomson G. Homozygous parent affected sib pair method for detecting disease predisposing variants: Application to insulin-dependent diabetes mellitus. Genet Epidemiol 1993;10(5):273–288.

    Google Scholar 

  74. Langholz B, Tuomilheto-Wolf E, Thomas D, Pitkaniemi J, Tuomilehto J. Variation in HLA-associated risks of childhood insulin-dependent diabetes in the Finnish population: I. Allele effects at A, B and DR loci. Dime Study Group. Childhood Diabetes in Finland. Genet Epidemiol 1995;441–453.

  75. Demaine AG, Hibberd ML, Mangles D, Millward BA. A new marker in the HLA class I region is associated with the age at onset of IDDM. Diabetol 1995;38(5):623–628.

    Google Scholar 

  76. Fennessy M, Metcalfe K, Hitman GA, Niven M, Biro PA, Tuomilehto J, Tuomilehto-Wolf E. A gene in the HLA class I region contributes to susceptibility to IDDM in the Finnish population. Childhood Diabetes in Finland (DiMe) Study Group [see comments]. Diabetol 1994;37(9):937–944.

    Google Scholar 

  77. Nakanishi K, Kobayashi T, Murase T, Nakatsuji T, Inoko H, Tsuji K, Kosaka K. Association of HLA-A24 with complete β-cell destruction in IDDM. Diab 1993;42:1086–1093.

    Google Scholar 

  78. Honeyman MC, Harrison LC, Drummond B, Colman PG, Tait BD. Analysis of families at risk for insulin-dependent diabetes mellitus reveals that HLA antigens influence progression to clinical disease. Mol Med 1995;1(5):576–582.

    Google Scholar 

  79. Nejentsev S, Reijonen H, Adojaan B, Kovalchuk L, Sochnevs A, Schwartz EI, Akerblom HK, Ilonen J. The effect of HLA-B allele on the IDDM risk defined by DRB1*04 subtypes and DQB1*0302. Diab 1997;46(11):1888–1892.

    Google Scholar 

  80. Lie BA, Todd JA, Pociot F, Nerup J, Akselsen HE, Joner G, Dahl-Jorgensen K, Ronningen KS, Thorsby E, Undlien DE. The predisposition to type 1 diabetes linked to the human leukocyte antigen complex includes at least one non-class II gene. Am J Hum Genet 1999;64:793–800.

    Google Scholar 

  81. Lie BA, Sollid LM, Ascher H, Ek J, Akselsen HE, Ronningen KS, Thorsby E, Undlien DE. A gene telomeric of the HLA class I region is involved in predisposition to both type 1 diabetes and coeliac disease. Tissue Antigens 1999;54(2):162–168.

    Google Scholar 

  82. Moghaddam PH, de Knijf P, Roep BO, Van der Auwera B, Naipal A, Gorus F, Schuit F, Giphart MJ. Genetic structure of IDDM1: Two separate regions in the major histocompatibility complex contribute to susceptibility or protection. Diab 1998;47:263–269.

    Google Scholar 

  83. Gambelunghe G, Ghaderi M, Cosentino A, Falorni A, Brunetti P, Falorni Al, Sangeevi CB. Association ofMHCClass I chain-related A (MIC-A) gene polymorphism with type 1 diabetes. Diabetol 2000;43(4):514–516.

    Google Scholar 

  84. Bell GI, Selby MJ, Rutter WJ. The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature 1982;295(5844):31–35.

    Google Scholar 

  85. Kennedy GC, German MS, Rutter WJ. The minisatellite in the diabetes susceptibility locus IDDM2 regulates insulin transcription. Nat Genet 1995;9:293.

    Google Scholar 

  86. Lucassen AM, Screaton GR, Julier C, Elliott TJ, Lathrop M, Bell JI. Regulation of insulin gene expression by the IDDM associated, insulin locus haplotype. Hum Mol Genet 1995;4(4):501–506.

    Google Scholar 

  87. Bennett ST, Lucassen AM, Gough SCL, Powell EE, Undlien DE, Pritchard LE, Merriman ME, Kawaguchi Y, Dronsfield MJ, Pociot F, Nerup J, Bouzekri N, Cambon-Thomsen A, Rønningen KS, Barnett AH, Bain SC, Todd JA. Susceptibility to human type I diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet 1995;9:284–292.

    Google Scholar 

  88. Bennett ST, Wilson AJ, Cucca F, Nerup J, Pociot F, McKinney PA, Barnett AH, Bain SC, Todd JA. IDDM2-VNTR-encoded susceptibility to type 1 diabetes: Dominant protection and parental transmission of alleles of the insulin gene-linked minisatellite locus. J Autoimmun 1996;9:415–421.

    Google Scholar 

  89. Bell GI, Horita S, Karam JH. A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. Diab 1984;33:176–183.

    Google Scholar 

  90. Bennet ST, Wilson AJ, Esposito L, Bouzekri J, Undlien D, Cucca F, Buzzetti R, Bosi E, Pociot F, Nerup J, Cambon-Thomsen A, Pugliese A, Shield JP, McKinney PA, Bain SC, Polychronakos C, Todd JA. Insulin VNTR allele-specific effect in type 1 diabetes depends on identity of untransmitted paternal allele. Nat Genet 1997;17:350–352.

    Google Scholar 

  91. Chentoufi AA, Polychronakos C. Insulin expression levels in the thymus modulate insulin-specific autoreactive T-cell tolerance: The mechanism by which the IDDM2 locus may predispose to diabetes. Diab 2002;51(5):1383–1390.

    Google Scholar 

  92. Nistico L, Buzzetti R, Pritchard LE, van der Auwera B, Giovannini C, Bosi E, Larrad MT, Rios MS, Chow CC, Cockram CS, Jacobs K, Mijovic C, Bain SC, Barnett AH, Vandewalle CL, Schuit F, Gorus FK, Tosi R, Pozzilli P, Todd JA. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian Diabetes Registry. HumMol Genet 1996;5(7):1075–1080.

    Google Scholar 

  93. Verge CF, Vardi P, Babu S, Bao F, Erlich HA, Bugawan T, Tiosano D, Yu L, Eisenbarth GS, Fain PR. Evidence for oligogenic inheritance of type 1A diabetes in a large Bedouin Arab family. J Clin Invest 1998;102(8):1569–1575.

    Google Scholar 

  94. Falchuk ZM, Rogentine GN, Strober W. Predominance of histocompatibility antigen HL-A8 in patients with gluten-sensitive enteropathy. J Clin Invest 1972;51(6):1602–1605.

    Google Scholar 

  95. Sollid LM, Thorsby E. HLA susceptibility genes in celiac disease: Genetic mapping and role in pathogenesis. Gastroenterology 1993;105:910–922.

    Google Scholar 

  96. Farre C, Humbert P, Vilar P, Varea V, Aldeguer X, Carnicer J, Carballo M, Gassull MA. Serological markers and HLA-DQ2 haplotype among first-degree relatives of celiac patients. Catalonian Coeliac Disease Study Group. Dig Dis Sci 1999;44(11):2344–2349.

    Google Scholar 

  97. Simpson RW, McDonald J, Wahlqvist ML, Balasz N, Sissons M, Atley L. Temporal study of metabolic change when poorly controlled non-insulin-dependent diabetics change from low to high carbohydrate and fiber diet. Am J Clin Nutr 1988;48:104–109.

    Google Scholar 

  98. Bao F, Yu L, Babu S, Wang T, Hoffenberg EJ, Rewers M, Eisenbarth GS. One third of HLA DQ2 homozygous patients with type 1 diabetes express celiac disease associated transglutaminase autoantibodies. J Autoimmunity 1999;13:143–148.

    Google Scholar 

  99. Hoffenberg EJ, Bao F, Eisenbarth GS, Uhlhorn C, Haas J, Sokol RJ, Rewers M. Transglutaminase antibodies in children with a genetic risk for celiac disease. J Pediatr 2000;137(3):356–360.

    Google Scholar 

  100. Fuller JH, Shipley MJ, Rose G, Jarrett RJ, Keen H. Mortality from coronary heart disease and stroke in relation to degree of glycemia: The Whitehall study. Brit Med J 1983;287:867–870.

    Google Scholar 

  101. Yu L, Brewer KW, Gates S, Wang T, Babu S, Gottlieb PA, Freed BM, Noble J, Erlich HA, Rewers MJ, Eisenbarth GS. DRB1*04 and DQ alleles: Expression of 21-hydroxylase autoantibodies and risk of progression to Addison's disease. J Clin Endocrinol Metab 1999;84(1):328–335.

    Google Scholar 

  102. Garg A, Bonanome A, Grundy SM, Zhang ZJ, Unger RH. Comparison of a high-carbohydrate diet with a high-monounsaturated-fat diet in patients with non-insulin-dependent diabetes mellitus. New Engl J Med 1988;319:829–834.

    Google Scholar 

  103. Heward JM, Allahabadia A, Daykin J, Carr-Smith J, Daly A, Armitage M, Dodson PM, Sheppard MC, Barnett AH, Franklyn JA, Gough SC. Linkage disequilibrium between the human leukocyte antigen class II region of the major histocompatibility complex and Graves' disease: Replication using a population case control and family-based study. J Clin Endocrinol Metab 1998;83(10):3394–3397.

    Google Scholar 

  104. Boehm BO, Kuhnl P, Loliger C, Ketzler-Sasse U, Holzberger G, Seidl S, Bauerle R, Schifferdecker E, Usadel KH. HLA-DR3 and HLA-DR5 confer risk for autoantibody positivity against the thyroperoxidase (mic-TPO) antigen in healthy blood donors. Clin Investig 1993;71(3):221–225.

    Google Scholar 

  105. Farid NR. Immunogenetics of autoimmune thyroid disorders. Endocrinol Metab Clin North Am 1987;16(2):229–245.

    Google Scholar 

  106. Tandon N, Zhang L, Weetman AP. HLA associations with Hashimoto's thyroiditis. Clin Endocrinol (Oxf) 1991;34(5):383– 386.

    Google Scholar 

  107. Yanagawa T, Hidaka Y, Guimaraes V, Soliman M, DeGroot LJ. CTLA-4 gene polymorphism associated with Graves' disease in a Caucasian population. J Clin Endocrinol Metab 1995;80(1):41– 45.

    Google Scholar 

  108. Donner H, Rau H, Walfish PG, Braun J, Siegmund T, Finke R, Herwig J, Usadel KH, Badenhoop K. CTLA4 alanine-17 confers genetic susceptibility to Graves' disease and to type-1 diabetes mellitus*. J Clin Endocrinol Metab 1997;82(1):143–146.

    Google Scholar 

  109. Heward JM, Allahabadia A, Armitage M, Hattersley A, Dodson PM, Macleod K, Carr-Smith J, Daykin J, Daly A, Sheppard MC, Holder RL, Barnett AH, Franklyn JA, Gough SC. The development of Graves' disease and the CTLA-4 gene on chromosome 2q33. J Clin Endocrinol Metab 1999;84(7):2398–2401.

    Google Scholar 

  110. Yki-Jarvinen H, Koivisto VA. Effects of body composition on insulin sensitivity. Diab 1983;32:965–9690.

    Google Scholar 

  111. Donner H, Braun J, Seidl C, Rau H, Finke R, Ventz M, Walfish PG, Usadel KH, Badenhoop K. Codon 17 polymorphism of the cytotoxic T lymphocyte antigen 4 gene in Hashimoto's thyroiditis and Addison's disease. J Clin Endocrinol Metab 1997;82(12):4130–4132.

    Google Scholar 

  112. Marron MP, Raffel LJ, Garchon HJ, Jacob CO, Serrano-Rios M, Martinez LM, Teng WP, Park Y, Zhang ZX, Goldstein DR, Tao YW, Beaurain G, Back JF, Huang HS, Luo DF, Zeidler A, Rotter JI, Yang MC, Modilevsky T, Maclaren NK, She JX. Insulin-dependent diabetes mellitus (IDDM) is associated with CTLA4 polymorphisms in multiple ethnic groups. HumMol Genet 1997;6(8):1275–1282.

    Google Scholar 

  113. Kemp EH, Ajjan RA, Husebye ES. A cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphism is associated with autoimmune Addison's disease in English patients. Clin Endocrin 1998;49(5):609–613.

    Google Scholar 

  114. Eisenbarth GS, Wilson PW, Ward F, Buckley C, Lebovitz HE. The polyglandular failure syndrome: Disease inheritance, HLAtype and immune function. Ann Intern Med 1979;91(4):528– 533.

    Google Scholar 

  115. Maclaren NK, Riley WJ. Inherited susceptibility to autoimmune Addison's disease is linked to human leukocyte antigens-DR3 and/or DR4, except when associated with type 1 autoimmune polyglandular syndrome. J Clin Endocrinol Metab 1986;62(3):455–459.

    Google Scholar 

  116. Wasserman DH, Vranic M. Exercise and diabetes. In: Alberti KGMM, Krall LP, eds. The Diabetes Annual/3. Amsterdam: Elsevier, 1987:527–559.

    Google Scholar 

  117. Uchigata Y, Hirata Y. Insulin Autoimmune Syndrome (IAS, Hirata Disease). In: Eisenbarth G, ed. Molecular Mechanisms of Endocrine and Organ Specific Autoimmunity. Austin, Texas: R. G. Landes, 1999:133–148.

    Google Scholar 

  118. MacHulla HK, Schonermarck U, Schaaf A, Muller LP, Kloss C, Kruger J, Kunze G, Schonermarck G, Langner J. HLA-A, B, Cw and DRB1, DRB3/4/5, DQB1, DPB1 frequencies in German immunoglobulin A-deficient individuals. Scand J Immunol 2000;52(2):207–211.

    Google Scholar 

  119. Rewers M, Bugawan TL, Norris JM, Blair A, Beaty B, Hoffman M, McDuffie RS Jr, Hamman RF, Klingensmith G, Eisenbarth GS, Erlich HA. Newborn screening for HLA markers associated with IDDM: Diabetes autoimmunity study in the young (DAISY). Diabetol 1996;39(7):807–812.

    Google Scholar 

  120. Rewers M, Norris JM, Eisenbarth GS, Erlich HA, Beaty B, Klingensmith G, Hoffman M, Yu L, Bugawan TL, Blair A, Hamman RF, Groshek M, McDuffie RS Jr. Beta-cell autoantibodies in infants and toddlers without IDDM relatives: Diabetes autoimmunity study in the young (Daisy). J Autoimmun 1996;9(3):405– 410.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ide, A., Eisenbarth, G.S. Genetic Susceptibility in Type 1 Diabetes and its Associated Autoimmune Disorders. Rev Endocr Metab Disord 4, 243–253 (2003). https://doi.org/10.1023/A:1025100328425

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025100328425

Navigation