Skip to main content
Log in

Differential Activation of Signal Transduction Pathways Mediating Oxidative Burst by Chicken Heterophils in Response to Stimulation with Lipopolysaccharide and Lipoteichoic Acid

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Toll-like receptors (TLRs) have been previously shown to mediate oxidative burst in chicken heterophils. This study was conducted to begin to map the molecular pathways that regulate TLR-mediated oxidative burst. Peripheral blood heterophils from neonatal chicks were isolated and exposed to known inhibitors of signal transduction pathways for either 20 min (genistein, verapamil, or chelerythrine) or 120 min (pertussis toxin) at 39°C. The cells were then stimulated for 30 min at 39°C with Salmonella enteritidis lipopolysaccharide (LPS) or Staphylococcus aureus lipoteichoic acid (LTA). The heterophil oxidative burst was then quantitated by luminol-dependent chemiluminescence (LDCL). Genistein (a tyrosinekinase inhibitor), verapamil (a calcium channel blocker), chelerythrine (a protein kinase C inhibitor), and pertussis toxin (a G-protein inhibitor) significantly reduced LPS-stimulated oxidative burst in chicken heterophils by 34, 50, 63, and 51%, respectively. Although genistein had a statistically significant effect on reducing LPS-stimulated LDCL biologically it seems to play only a minor role within the oxidative burst pathway. Heterophils stimulated with the gram-positive TLR agonist, LTA, activated a different signal transduction pathway since chelerythrine was the only inhibitor that significantly reduced (72%) LTA-stimulated oxidative burst. These findings demonstrate that distinct signal transduction pathways differentially regulate the stimulation of oxidative burst in avian heterophils. Pertussis toxin-sensitive, protein kinase C-dependent, Ca++-dependent G proteins appear to regulate oxidative burst of avian heterophils stimulated with gram-negative agonist LPS; whereas, a protein kinase C-dependent signal transduction pathway plays the major role activating the oxidative burst of avian heterophils stimulated with gram-positive agonists. The distinct differences in the response of heterophils to these two agonists illustrate the specificity of TLRs to pathogen-associated molecular patterns (PAMP)s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harmon, B. G. 1998. Avian heterophils in inflammation and disease resistance. Poult. Sci. 77:972–977.

    Google Scholar 

  2. Kogut, M. H., G. I. Tellez, E. D. McGruder, B. M. Hargis, J. D. Williams, D. E. Corrier, and J. R. DeLoach. 1994. Heterophils are decisive components in the early responses of chickens to Salmonella enteritidis infections. Microb. Pathol. 16:141–151.

    Google Scholar 

  3. Kogut, M. H., K. J. Genovese, and V. K. Lowry. 2001. Differential activation of signal transduction pathways mediating phagocytosis, oxidative burst, and degranulation by chicken heterophils in response to stimulation with opsonized Salmonella enteritidis. Inflammation 25(1):7–15.

    Google Scholar 

  4. Kogut, M. H., E. D. McGruder, B. M. Hargis, D. E. Corrier, and J. R. DeLoach. 1995. In vivo activation of heterophil function in chickens following injection with Salmonella enteritidis—immune lymphokines. J. Leukoc. Biol. 57:56–62.

    Google Scholar 

  5. Stabler, J. G., T. McCormick, K. Powell, and M. H. Kogut. 1994. Avian heterophils and monocytes: Phagocytic and bactericidal activities against Salmonella enteritidis. Vet. Microbiol. 38:293–305.

    Google Scholar 

  6. Medzhitov, R. and C. A. Janeway Jr. 1997. Innate immunity: The virtues of a nonclonal system of recognition. Cell 91:295–298.

    Google Scholar 

  7. Schwandner, R., R. Dziarski, H. Wesche, M. Rothe, and C. J. Kirschning. 1999. Peptidoglycan-and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J. Biol. Chem. 274(18):17406–17409.

    Google Scholar 

  8. Medzhitov, R. and C. A. Janeway Jr. 1997. Innate immunity: Impact on the adaptive immune response. Curr. Opin. Immunol. 9:4–9.

    Google Scholar 

  9. Janeway, C. A., Jr. and R. Medzhitov. 1999. Innate immunity: Lipoproteins take their Toll on the host. Curr. Biol. 9:R879-R882.

    Google Scholar 

  10. Medzhitov, R. and C. A. Janeway Jr. 2000. The Toll receptor family and microbial recognition. Trends Microbiol. 8(10):452–456.

    Google Scholar 

  11. Akira, S., K. Takeda., and T. Kaisho. 2001. Toll-like receptors: Critical proteins linking innate and acquired immunity. Nature Immunol. 2(8):675–680.

    Google Scholar 

  12. Boyd, Y., M. Goodchild, S. Morroll, and N. Bumstead. 2001. Mapping of the chicken and mouse genes for Toll-like receptor 2 (TLR2) to an evolutionarily conserved chromosomal segment. Immunogenetics 52:294–298.

    Google Scholar 

  13. Fukui, A., N. Inoue, M. Matsumoto, M. Nomura, K. Yamada, Y. Matsuda, K. Toyoshima, and T. Seya. 2001. Molecular cloning and functional characterization of chicken Toll-like receptors. J. Biol. Chem. 276(50):47143–47149.

    Google Scholar 

  14. Farnell, M. B., T. L. Crippen, H. He, C. L. Swaggerty, and M. H. Kogut. 2003. Oxidative burst mediated by Toll-like receptors (TLR) and CD14 on avian heterophils stimulated with bacterial Toll agonists. Dev. Comp. Immunol. 27(5):423–429.

    Google Scholar 

  15. Aliprantis, A. O., D. S. Weiss, and A. Zychlinsky. 2001. Toll-like receptor-2 transduces signals for NF-kappa B activation, apoptosis and reactive oxygen species production. J. Endotoxin Res. 7(4):287–291.

    Google Scholar 

  16. Aliprantis, A. O., R. B. Yang, M. R. Mark, S. Suggett, B. Devaux, J. D. Radolf, G. R. Klimpel, P. Godowski, and A. Zychlinsky. 1999. Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 285(5428):736–739.

    Google Scholar 

  17. National Research Council. 1994. Nutrient Requirements of Poultry, 9th edn. National Academy Press, Washington, DC.

  18. Merrill, G. A., R. Bretthauer, J. Wright-Hicks, and R. C. Allen. 1996. Oxygenation activities of chicken polymorphonuclear leukocytes investigated by selective chemiluminigenic probes. Lab. Anim. Sci. 46(5):530–538.

    Google Scholar 

  19. Raloff, J. 1998. Livestock's role in antibiotic resistance. Sci. News 154(3):39.

    Google Scholar 

  20. Ferber, D. 2002. Livestock feed ban preserves drugs' power. Science 295(5552):27–28.

    Google Scholar 

  21. Lowenthal, J. W., B. Lambrecht, T. P. van den Berg, M. E. Andrew, A. D. G. Strom, and A. G. D. Bean. 2000. Avian cytokines—The natural approach to therapeutics. Dev. Comp. Immunol. 24:355–365.

    Google Scholar 

  22. Lodish, H., A. Berk, S. L. Zipursky, D. Matsudaira, D. Baltimore, and J. E. Darnell. 2000. Cell-to-cell signaling: Hormones and receptors. In: Molecular Cell Biology, 4th edn., Ch. 20. Freeman, New York, pp. 848–909.

    Google Scholar 

  23. Janeway, C. A., P. Travers, M. Walport, and M. Shlomchik. 2001. Signaling through immune system receptors. In: Immunobiology: The Immune System in Health and Disease, 5th edn., Ch. 6. Garland, New York, pp. 187–220.

    Google Scholar 

  24. Yu, P. W. and C. J. Czuprynski. 1996. Regulation of luminol-dependent chemiluminescence and degranulation by bovine neutrophils stimulated with opsonized zymosan. Vet. Immunol. Immunopathol. 50(1/2):29–42.

    Google Scholar 

  25. Ortiz-Carranza, O. and C. J. Czuprynski. 1992. Activation of bovine neutrophils by Pasteurella haemolytica leukotoxin is calcium dependent. J. Leukoc. Biol. 52(5):558–564.

    Google Scholar 

  26. Laudanna, C., D. Mochly-Rosen, T. Liron, G. Constantin, and E. C. Butcher. 1998. Evidence of zeta protein C involvement in polymorphonuclear neutrophil integrin-dependent adhesion and chemotaxis. J. Biol. Chem. 273(46):30306–30315.

    Google Scholar 

  27. Tilton, B., M. Andjelkovic, S. A. Didichenko, B. A. Hemmings, and M. Thelen. 1997. G-protein-coupled receptors and Fc gamma-receptors mediate activation of Akt/protein kinase B in human phagocytes. J. Biol. Chem. 272(44):28096–28101.

    Google Scholar 

  28. Crockett-Torabi, E. and J. C. Fantone. 1990. Soluble and insoluble immune complexes activate human neutrophil NADPH oxidase by distinct Fc gamma receptor-specific mechanisms. J. Immunol. 145(9):3026–3032.

    Google Scholar 

  29. Kogut, M., V. K. Lowry, and M. Farnell. 2002. Selective pharmacological inhibitors reveal the role of Syk tyrosine kinase, phospholipase C, phosphatidylinositol-3′-kinase, and p38 mitogen-activated protein kinase in Fc receptor-mediated signaling of chicken heterophil degranulation. Int. Immunopharmacol. 2(7):963–973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Kogut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farnell, M.B., He, H. & Kogut, M.H. Differential Activation of Signal Transduction Pathways Mediating Oxidative Burst by Chicken Heterophils in Response to Stimulation with Lipopolysaccharide and Lipoteichoic Acid. Inflammation 27, 225–231 (2003). https://doi.org/10.1023/A:1025088514676

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025088514676

Navigation