Skip to main content
Log in

Study of the interactions between carbon monoxide and high specific surface area tin dioxideThermogravimetric analysis and FTIR spectroscopy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The interactions of CO with a high specific surface area tin dioxide was investigated by FTIR spectroscopy and thermogravimetric analysis. FTIR study of CO interactions have shown that CO can adsorb on cus (coordinatively unsaturated sites) Sn4+ cation sites (band at 2201 cm-1). In addition, CO reacts with surface oxygen atoms. This leads to the partial reduction of SnO2 surface and to the formation of ionised oxygen vacancies together with the release of free electrons, which are responsible for the loss of transmission. Formed CO2 can chemisorb on specific surface sites: on basic sites to form carbonates species and on acidic sites (Sn4+-CO2 species) which is in competition with the formation of Sn4+-CO species. TG experiment have shown that the reduction of SnO2 by CO at 400°C occurs in two steps. First, the reduction of SnO2 surface, which is a quick phenomenon. This has allowed to evaluate that more than 12% of reducible surface oxygens can react with CO, essentially because of the presence of a large amount of surface hydroxyl groups. The second step of the reduction of SnO2 would be the progressive reduction of SnO2 bulk by the slow diffusion of oxygen atoms from the bulk to the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Références

  1. M. Labeau, B. Gautheron, F. Cellier, M. Vallet-Regi, E. Garcia and J. M. Gonzalez Calbet, J. Solid State Chem., 102 (1993) 434.

    Article  CAS  Google Scholar 

  2. Y. Teraoka, T. Harada, T. Iwasaki, T. Ikeda, and S. Kagawa, Chem. Lett., (1993) 773.

  3. N. D. Gangal, N. M. Gupta, and R. M. Iyer, J. Catal., 126 (1990) 13.

    Article  CAS  Google Scholar 

  4. A. Chiorino, G. Ghiotti, F. Prinetto, M. C. Carotta, G. Martinelli and M. Merli, Sensors and Actuators B, 44 (1997) 474.

    Article  Google Scholar 

  5. S. H. Hahn, N. Barsan and U. Weimar, Sensors and Actuators B, 78 (2001) 64.

    Article  Google Scholar 

  6. G. J. Li and S. Kawi, Mater. Lett., 34 (1998) 99.

    Article  Google Scholar 

  7. K. C. Song and Y. Kang, Materials Letters, 42 (2000) 283.

    Article  CAS  Google Scholar 

  8. K. C. Song and J. H. Kim, Powder Technol., 107 (2000) 268.

    Article  CAS  Google Scholar 

  9. D. Amalric-Popescu and F. Bozon-Verduraz, Catal. Lett., 64 (2000) 125.

    Article  CAS  Google Scholar 

  10. P. G. Harrison and A. Guest, J. Chem. Soc., Faraday Trans. 1, 83 (1987) 3383.

    Article  CAS  Google Scholar 

  11. E. W. Thornton and P. G. Harrison, J. Chem. Soc., Faraday Trans. 1, 71 (1975) 461.

    Article  CAS  Google Scholar 

  12. S. Emiroglu, N. Barsan, U. Weimar and V. Hoffmann, Thin Solid Films, 391 (2001) 176.

    Article  CAS  Google Scholar 

  13. M. Niwa, T. Minami, H. Kodama, T. Hattori and Y. Murakami, J. Catal., 53 (1978) 198.

    Article  CAS  Google Scholar 

  14. A. Chiorino, F. Boccuzzi and G. Ghiotti, Sensors and Actuators B, 5 (1991) 189.

    Article  Google Scholar 

  15. N. Sergent, P. Gelin, L. Perier-Camby, H. Praliaud and G. Thomas, Sensors and Actuators, B: Chemical, 84 (2002) 176.

    Article  Google Scholar 

  16. N. Sergent, P. Gélin, L. Périer-Camby, H. Praliaud and G. Thomas, Phys. Chem. Chem. Phys., (In press).

  17. J. Tribout, F. Chancel, M. I. Baraton, H. Ferkel and W. Riehemann, Key Eng. Mater., 132–136 (1997) 1341.

    Article  Google Scholar 

  18. G. Ghiotti, A. Chiorino and F. Boccuzzi, Sensors and Actuators, 19 (1989) 151.

    Article  CAS  Google Scholar 

  19. M. I. Baraton and L. Merhari, Scripta Materialia, 44 (2001) 1643.

    Article  CAS  Google Scholar 

  20. L. H. Little, Infrared spectra of adsorbed species, 1966 p. 350.

  21. K. Nakamoto, Wiley and Sons, New York 1978, p. 448.

  22. H. Knoezinger, Adv. Catal., 25 (1976) 184.

    Article  CAS  Google Scholar 

  23. N. D. Parkyns, J. Chem. Soc. A, (1969) 410.

  24. J. B. Peri, J. Phys. Chem., 70 (1966) 3168.

    CAS  Google Scholar 

  25. J. Saussey, J. C. Lavalley and C. Bovet, J. Chem. Soc., Faraday Trans. 1, 78 (1982) 1457.

    Article  CAS  Google Scholar 

  26. E. Guglielminotti, Langmuir, 6 (1990) 1455.

    Article  CAS  Google Scholar 

  27. C. Morterra, E. Giamello, L. Orio and M. Volante, J. Phys. Chem., 94 (1990) 3111.

    Article  CAS  Google Scholar 

  28. J. Oviedo and M. J. Gillan, Surf. Sci., 463 (2000) 93.

    Article  CAS  Google Scholar 

  29. T. S. Rantala, V. Lantto and T. T. Rantala, Sens. Actuators, B, 19 (1994) 716.

    Article  CAS  Google Scholar 

  30. D. F. Cox, T. B. Fryberger and S. Semancik, Phys. Rev. B: Condens. Matter, 38 (1988) 2072.

    CAS  Google Scholar 

  31. J. M. Themlin, R. Sporken, J. Darville, R. Caudano, J. M. Gilles and R. L. Johnson, Phys. Rev. B: Condens. Matter, 42 (1990) 11914.

    CAS  Google Scholar 

  32. P. A. Cox, R. G. Egdell, C. Harding, W. R. Patterson and P. J. Tavener, Surf. Sci., 123 (1982) 179.

    Article  CAS  Google Scholar 

  33. V. A. Gercher and D. F. Cox, Surf. Sci., 322 (1995) 177.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sergent, N., Gélin, P., Périer-Camby, L. et al. Study of the interactions between carbon monoxide and high specific surface area tin dioxideThermogravimetric analysis and FTIR spectroscopy. Journal of Thermal Analysis and Calorimetry 72, 1117–1126 (2003). https://doi.org/10.1023/A:1025084129973

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025084129973

Navigation