Skip to main content
Log in

L-Carnitine Transport in Kidney of Normotensive, Wistar–Kyoto Rats: Effect of Chronic L-Carnitine Administration

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To examine the effect of long-term administration of L-carnitine on L-carnitine transport in renal brush-border membrane vesicles (BBMVs) from normotensive, Wistar-Kyoto rats.

Methods. Rats (n = 20) were orally administered 0.2 g carnitine/kg body weight per day for a total period of 8 weeks. Kinetic parameters of L-carnitine uptake were calculated by non-linear regression, and the relative abundance of the carnitine transporter, OCTN2, was determined by Western blot analysis.

Results. Initial rates and maximal overshoot levels of Na+-dependent L-carnitine transport were significantly reduced in BBMVs from L-carnitine-treated rats compared with untreated animals. Similarly, the maximal transport rate (Vmax) of OCTN2 was lower in treated rats. However, no differences were observed in the Michaelis constant (K m) or the diffusion constant (K d) between the two groups of animals. The amount of OCTN2 protein was also decreased in L-carnitine-fed rats, this reduction being similar to that of the V max. These results were accompanied by an increase in the serum levels and also in the renal excretion of both free and esterified carnitine in treated rats, indicating that the long-term administration of L-carnitine leads to increased renal carnitine clearance.

Conclusion. These findings suggest a downregulation of OCTN2 at the renal level, in the presence of high levels of carnitine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. Tanphaichitr, D. W. Horne, and H. P. Broquist. Lysine, a precursor of carnitine in the rat. J. Biol. Chem. 246:6364-6366 (1971).

    Google Scholar 

  2. A. L. Carter, T. O. Abney, and D. F. Lapp. Biosynthesis and metabolism of carnitine. J. Child Neurol. 10:23-27 (1995).

    Google Scholar 

  3. E. P. Brass. Carnitine transport, In R. Ferrari, S. Dimauro, and G. Shewoord (eds.), L-Carnitine and its Role in Medicine: From Function to Therapy 73:287-297 (2001).

  4. I. Tamau, R. Ohashi, J. I. Nezu, Y. Sau, D. Kobayashi, A. Oku, M. Shimane, and A. Tsuji. Molecular and functional characterization of organic cation/carnitine transporter family in mice. J. Biol. Chem. 275:40064-40072 (2000).

    Google Scholar 

  5. B. Stieger, B. O'Neill, and S. Krähenbühl. Characterization of L-carnitine transport by rat kidney brush-border membrane vesicles. Biochem. J. 309:643-647 (1995).

    Google Scholar 

  6. W. Huang, S. N. Shaikh, M. E. Ganapathy, U. Hopfer, F. H. Leibach, A. Lee Carter, and V. Ganapathy. Carnitine transport and its inhibition by sulfonylureas in human kidney proximal tubular epithelial cells. Biochem. Pharmacol. 58:1361-1370 (1999).

    Google Scholar 

  7. K. Lahjouji, C. Malo, G. A. Mitchell, and I. A. Qureshi. L-carnitine transport in mouse renal and intestinal brush-border and basolateral membrane vesicles. Biochim. Biophys. Acta 1558:82-93 (2002).

    Google Scholar 

  8. I. Tamau, K. China, Y. Sau, D. Kobayashi, J. I. Nezu, E. Kawahara, and A. Tsuji. Na+-coupled transport of L-carnitine via high-affinity carnitine transporter OCTN2 and its subcellular localization in kidney. Biochim. Biophys. Acta 1512:273-284 (2001).

    Google Scholar 

  9. W. R. Treem, C. A. Stanley, D. N. Finegold, D. E. Hale, and P. M. Coaters. Primary carnitine deficiency due to a failure of carnitine transport in kidney, muscle, and fibroblasts. N. Engl. J. Med. 319:1331-1336 (1988).

    Google Scholar 

  10. M. Horiuchi, K. Kobayashi, S. Yamaguchi, N. Shimizu, T. Koizumi, H. Nikaido, J. Hayakawa, M. Kuwajima, and T. Saheki. Primary defect of juvenile visceral steatosis (jvs) mouse with systemic carnitine deficiency is probably in renal carnitine transport system. Biochim. Biophys. Acta 1226:25-30 (1994).

    Google Scholar 

  11. V. Tanphaichitr and P. Leelahagul. Carnitine metabolism and human carnitine deficiency. Nutrition 9:246-254 (1993).

    Google Scholar 

  12. T. C. Vary and J. R. Neely. A mechanism for reduced myocardial carnitine levels in diabetic animals. Am. J. Physiol. 242:H154-H158 (1982).

    Google Scholar 

  13. A. Gürlek, E. Tutar, E. Akcil, I. Dincer, C. Erol, P. A. Kocatürk, and D. Oral. The effects of L-carnitine treatment on left ventricular function and erythrocyte superoxide dismutase activity in patients with ischemic cardiomyopathy. Eur. J. Heart Fail. 2:189-193 (2000).

    Google Scholar 

  14. M. Fujiwana, T. Nakano, S. Tamoto, and Y. Yamada. Effect of L-carnitine in patients with ischemic heart disease. J. Cardiol. 21:493-504 (1991).

    Google Scholar 

  15. H. Rauchová, Z. Dobesová, Z. Drahota, J. Zicha, and J. Kunes. The effect of chronic l-carnitine treatment on blood pressure and plasma lipids in spontaneously hypertensive rats. Eur. J. Pharmacol. 342:235-239 (1998).

    Google Scholar 

  16. O. H. Wieland, T. Deufel, and I. Paetzke-Brunner. Free and esterified carnitine: Colorimetric method. In H. U. Bergmeyer (ed.), Methods in Enzymatic Analysis, Academic Press, New York, 1985, pp. 481-488.

    Google Scholar 

  17. R. S. Hare. Endogenous creatinine in serum and urine. Pro. Soc. Exp. Biol. Med. 74:148-152 (1950).

    Google Scholar 

  18. A. Mate, M. A. de la Hermosa, A. Barfull, J. M. Planas, and C. M. Vázquez. Characterization of D-fructose transport by rat kidney brush-border membrane vesicles: changes in hypertensive rats. Cell. Mol. Life Sci. 58:1-7 (2001).

    Google Scholar 

  19. M. M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal. Biochem. 72:248-254 (1976).

    Google Scholar 

  20. J. P. Bretaudiere, A. Vassault, L. Amsellem, M. L. Pourc, H. Thieu-Phung, and M. Bailly. Criteria for establishing a standardized method for determining alkaline phosphatase activity in human serum. Clin. Chem. 23:2263-2274 (1977).

    Google Scholar 

  21. B. Colas and S. Maroux. Simultaneous isolation of brush border and basolateral membrane from rabbit enterocytes. Biochim. Biophys. Acta 600:406-420 (1980).

    Google Scholar 

  22. R. J. Pennington. Biochemistry of dystrophic muscle. Mitochondrial succinate-tetrazolium reductase and adenosine triphosphatase. Biochem. J. 80:649-652 (1961).

    Google Scholar 

  23. D. R. Absolom. Basic methods for the study of phagocytosis. Methods Enzymol. 132:95-180 (1986).

    Google Scholar 

  24. A. G. Engel, C. J. Rebouche, D. M. Wilson, A. M. Glasgow, C. A. Romshe, and R. P. Cruse. Primary systemic carnitine deficiency: II. Renal handling of carnitine. Neurology 31:819-825 (1981).

    Google Scholar 

  25. C. J. Rebouche and D. L. Mack. Sodium gradient-stimulated transport of l-carnitine into renal brush border membrane vesicles: kinetics, specificity, and #x00AEulation by dietary carnitine. Arch. Biochem. Biophys. 235:393-402 (1984).

    Google Scholar 

  26. M. Spaniol, H. Brooks, L. Auer, A. Zimmermann, M. Solioz, B. Stieger, and S. Krähenbühl. Development and characterization of an animal model of carnitine deficiency. Eur. J. Biochem. 268:1876-1887 (2001).

    Google Scholar 

  27. P. G. Welling, J. H. Thomsen, A. L. Shug, and F. L. Tse. Pharmacokinetics of L-carnitine in man following intravenous infusion of dl-carnitine. Int. J. Clin. Pharmacol. Biopharm. 17:56-60 (1979).

    Google Scholar 

  28. T. Kalaiselvi and C. Panneerselvam. Effect of L-carnitine on the status of lipid peroxidation and antioxidants in aging rats. J. Nutr. Biochem. 9:575-581 (1998).

    Google Scholar 

  29. S. Berardi, B. Stieger, B. Hagenbuch, E. Carafoli, and S. Krähenbühl. Characterization of L-carnitine transport into rat skeletal muscle plasma membrane vesicles. Eur. J. Biochem. 267:1985-1994 (2000).

    Google Scholar 

  30. I. Tamau, R. Ohashi, J. I. Nezu, H. Yabuuchi, A. Oku, M. Shimane, Y. Sau, and A. Tsuji. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J. Biol. Chem. 273:20376-20383 (1998).

    Google Scholar 

  31. F. Scaglia, Y. Wang, and N. Longo. Functional characterization of the carnitine transporter defective in primary carnitine deficiency. Arch. Biochem. Biophys. 364:99-106 (1999).

    Google Scholar 

  32. R. Ohashi, I. Tamau, H. Yabuuchi, J. I. Nezu, A. Oku, Y. Sau, M. Shimane, and A. Tsuji. Na+-dependent carnitine transport by organic cation transporter (OCTN2): Its pharmacological and toxicological relevance. J. Pharmacol. Exp. Ther. 291:778-784 (1999).

    Google Scholar 

  33. Y. Wang, T. A. Meadows, and N. Longo. Abnormal sodium stimulation of carnitine transport in primary carnitine deficiency. J. Biol. Chem. 275:20782-20786 (2000).

    Google Scholar 

  34. C. A. Wagner, U. Lükeville, S. Kaltenbach, I. Moschen, A. Bröer, T. Risler, S. Bröer, and F. Lang. Functional and pharmacological characterization of human Na+-carnitine cotransporter hOCTN2. Am. J. Physiol. 279:F584-F591 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen M. Vázquez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Amores, L., Mate, A. & Vázquez, C.M. L-Carnitine Transport in Kidney of Normotensive, Wistar–Kyoto Rats: Effect of Chronic L-Carnitine Administration. Pharm Res 20, 1133–1140 (2003). https://doi.org/10.1023/A:1025080426970

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025080426970

Navigation