Mechanisms of the Allotropic Transition of Sn

Abstract

The mechanisms of α-Sn nucleation on foreign seeds, including metastable ones, are considered. Based on earlier and new experimental data for induction times of α-Sn nucleation from 102 to 1011 s, it is suggested that spontaneous α-Sn nucleation is impossible because of kinetic hindrances in the solid phase.

This is a preview of subscription content, log in to check access.

REFERENCES

  1. 1.

    Goryunova, N.A., On the ?-??Transformation of Tin, Dokl. Akad. Nauk SSSR, 1950, vol. 75, pp. 51-54.

    Google Scholar 

  2. 2.

    Spivakovskii, V.B., Analiticheskaya khimiya olova (Analytical Chemistry of Tin), Moscow: Nauka, 1975, p. 250.

    Google Scholar 

  3. 3.

    Aleksandrov, B.I. and Dukin, V.V., Impurity Effects on the Residual Resistivity of Tin, Fiz. Met. Metalloved., 1972, vol. 34, pp. 739-749.

    Google Scholar 

  4. 4.

    Styrkas, A.D., Estimation of the Net Impurity Content in High-Purity Tin, Vysokochist. Veshchestva, 1987, vol. 1, no. 1, pp. 144-146.

    Google Scholar 

  5. 5.

    Ojuma, K., Matsumoto, H., and Taneda, Y., Differential Scanning Calorimetry Study of the ???x????????Transition in Tin, J. Less-Common Met., 1990, vol. 157, pp. L15?L18.

    Google Scholar 

  6. 6.

    Bykhovskii, A.I., Beta-to-Alpha Transition in Tin as an Example of Polymorphic Transformation, Ukr. Fiz. Zh. (Ukr. Ed.), 1963, vol. 8, no. 6, pp. 609-623.

    Google Scholar 

  7. 7.

    Aptekar’, I.L. and Styrkas, A.D., The Nature of the “Memory” Effect in Tin, Dokl. Akad. Nauk, 1992, vol. 325, no. 1, pp. 80-83.

  8. 8.

    Styrkas, A.D., Aging-Induced “Memory” Loss in Tin, Dokl. Akad. Nauk, 1999, vol. 368, no. 2, pp. 208-212.

    Google Scholar 

  9. 9.

    Danilov, V.I., Stroenie i kristallizatsiya zhidkosti (Structure and Crystallization of Liquids), Kiev: Naukova Dumka, 1956, p. 302.

    Google Scholar 

  10. 10.

    Hobbs, P.V., Ice Physics, Oxford: Clarendon, 1974, p. 352.

    Google Scholar 

  11. 11.

    Styrkas, A.D. and Styrkas, D.A., Two Novel Methods of the Production of High Purity Tin Powders with Reduced Oxygen Content, Powder Technol., 1999, vol. 104, pp. 164-168.

    Google Scholar 

  12. 12.

    Aptekar’, I.L. and Styrkas, A.D., H2;O as a Tin Pest Agent, Dokl. Akad. Nauk SSSR, 1987, vol. 297, no. 5, pp. 1149-1151.

  13. 13.

    Aptekar’, I.L. and Styrkas, A.D., Inert Substrates as Carriers of Tin Pest Infection from InSb to ?-Sn, Vysokochist. Veshchestva, 1993, no. 3, pp. 56-60.

  14. 14.

    Aptekar’, I.L., Styrkas, A.D., and Aptekar’, L.I., The Nature of Tin Pest, Vysokochist. Veshchestva, 1993, no. 3, pp. 66-70.

  15. 15.

    Aptekar’, I.L. and Styrkas, A.D., Noncontact Tin Infection, Dokl. Akad. Nauk SSSR, 1982, vol. 265, no. 5, pp. 1155-1157.

  16. 16.

    Kuo, K. and Burgers, W.G., An X-ray Investigation of the White to Grey Transformation of Tin, Proc. Konikl. Nederl. Akad. Wetensch., 1956, vol. 59B, no. 4, pp. 288?297.

    Google Scholar 

  17. 17.

    Olevskii, S.S., Tolstikhina, A.L., and Avilov, A.S., Model Representation of the Short-Range Order in Water, Zh. Strukt. Khim., 1984, vol. 25, no. 2, p. 73.

    Google Scholar 

  18. 18.

    Gorbaty, Yu.E. and Gupta, R.D., The Structural Features of Liquid and Supercritical Water, Ind. Eng. Chem. Res., 1998, vol. 37, pp. 3026-3035.

    Google Scholar 

  19. 19.

    Gurikov, Yu.V., Solvation Effects in Nonelectrolyte Solutions, Zh. Strukt. Khim., 1984, vol. 25, no. 2, pp. 74?83.

    Google Scholar 

  20. 20.

    Fedoseev, D.V., Deryagin, B.V., Varshavskaya, I.G., and Semenova-Tyan-Shanskaya, A.S., Kristallizatsiya almaza(Crystal Growth of Diamond), Moscow: Nauka, 1984, p. 136.

    Google Scholar 

  21. 21.

    Kurdyumov, A.V. and Pilyankevich, A.N., Fazovye prevrashcheniya v uglerode i nitride bora (Phase Transitions of Carbon and Boron Nitride), Kiev: Naukova Dumka, 1979, p. 188.

    Google Scholar 

  22. 22.

    Styrkas, A.D. and Oganyan, R.A., Production and Properties of Tin Powders, Powder Metall., 1992, vol. 35, no. 2, pp. 117-119.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Styrkas, A.D. Mechanisms of the Allotropic Transition of Sn. Inorganic Materials 39, 806–810 (2003). https://doi.org/10.1023/A:1025065027495

Download citation

Keywords

  • Experimental Data
  • Inorganic Chemistry
  • Induction Time
  • Kinetic Hindrance
  • Allotropic Transition