Skip to main content
Log in

Targeting and Blocking B7 Costimulatory Molecules on Antigen-Presenting Cells Using CTLA4Ig-Conjugated Liposomes: In Vitro Characterization and in Vivo Factors Affecting Biodistribution

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. CTLA4Ig, a fusion protein of CTLA-4 and Fc of immunoglobulin (Ig) heavy chain, inhibits the essential costimulatory signal for full T cell activation via blocking the interaction between CD28 and B7 molecules and renders T cell nonresponsiveness. CTLA4Ig has been used to control deleterious T cell activation in many experimental systems. We hypothesized that by conjugating CTLA4Ig to liposomes the efficacy of CTLA4Ig could be enhanced through multivalent ligand effect, superior targetability, and modification of the fate of ligated costimulatory molecules.

Methods and Results. Consistent with this hypothesis, liposome-conjugated CTLA4Ig bound to B7 and blocked their binding sites more efficiently than free CTLA4Ig, lowering the half maximal dose for B7 blocking by an order of the magnitude. These results were similar both in B7-1 expressing p815 cells and in activated macrophages. Moreover, CTLA4Ig-liposomes underwent rapid internalization upon cell surface binding through B7 molecules. In allogenic mixed lymphocyte reaction assays, the CTLA4Ig-liposomes were tested to show effective inhibition of T cell proliferation. In vivo, however, when CTLA4Ig-liposomes were injected into mice, a significant fraction was localized to the reticuloendothelial system (RES), presumably because of its binding to Fc receptors expressed on tissue macrophages. The Fc receptor-mediated uptake could be alleviated by coinjection of anti-FcR monoclonal antibody. In the mouse engrafted with pancreatic islets of Langerhans underneath the capsule of one kidney, despite the increased localization in RES, enhanced accumulation of CTLA4Ig-conjugated liposome was observed in the engrafted kidney compared to the contralateral kidney.

Conclusion. We show that the conjugation of CTLA4Ig to liposome could increase the efficiency of the targeting by increasing the binding avidity at cellular level and by increasing the concentration at the target site in in vivo system. The biodistribution and circulation time data suggested that the CTLA4Ig-liposomes could be improved upon minimizing the FcR-mediated uptake by Fc receptor-bearing cells. Thus, the strategy of conjugating CTLA4Ig to liposomes could be exploited for immune intervention in transplantation and autoimmune diseases for the efficient blocking of costimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. J. Lenschow, T. L. Walunas, and J. A. Bluestone. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14:233-258 (1996).

    Google Scholar 

  2. P. S. Linsley, W. Brady, M. Urnes, L. S. Grosmaire, N. K. Damle, and J. A. Ledbetter. CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 174:561-569 (1991).

    Google Scholar 

  3. A. V. Collins, D. W. Brodie, R. J. C. Gilbert, A. Iaboni, R. Manso-Sancho, B. Walse, and D. I. Stuart. P. A. v. d. Merwe, and S. J. Davis. The interaction properties of costimulatory molecules revisited. Immunity 17:201-210 (2002).

    Google Scholar 

  4. P. S. Linsley, P. M. Wallace, J. Johnson, M. G. Gibson, J. L. Greene, J. A. Ledbetter, C. Singh, and M. A. Tepper. Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science 257:792-795 (1992).

    Google Scholar 

  5. D. J. Lenschow, Y. Zeng, J. R. Thistlethwaite, A. Montag, W. Brady, M. G. Gibson, P. S. Linsley, and J. A. Bluestone. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg. Science 257:789-792 (1992).

    Google Scholar 

  6. L. A. Turka, P. S. Linsley, H. Lin, W. Brady, J. M. Leiden, R. Q. Wei, M. L. Gibson, X. G. Zheng, S. Myrdal, D. Gordon, T. Bailey, S. F. Bolling, and C. B. Thompson. T-cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc. Natl. Acad. Sci. USA 89:11102-11105 (1992).

    Google Scholar 

  7. B. K. Finck, P. S. Linsley, and D. Wofsy. Treatment of murine lupus with CTLA4Ig. Science 265:1225-1227 (1994).

    Google Scholar 

  8. S. D. Miller, C. L. Vanderlugt, D. J. Lenschow, J. G. Pope, N. J. Karandikar, M. C. Dal Canto, and J. A. Bluestone. Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity 3:739-745 (1995).

    Google Scholar 

  9. P. J. Perrin, D. Scott, L. Quigley, P. S. Albert, O. Feder, G. S. Gray, R. Abe, C. H. June, and M. K. Racke. Role of B7:CD28/CTLA-4 in the induction of chronic relapsing experimental allergic encephalomyelitis. J. Immunol. 154:1481-1490 (1995).

    Google Scholar 

  10. N. D. Griggs, S. S. Agersborg, R. J. Noelle, J. A. Ledbetter, P. S. Linsley, and K. S. Tung. The relative contribution of the CD28 and gp39 costimulatory pathways in the clonal expansion and pathogenic acquisition of self-reactive T cells. J. Exp. Med. 183:801-810 (1996).

    Google Scholar 

  11. N. Harris, C. Campbell, G. Le Gros, and F. Ronchese. Blockade of CD28/B7 co-stimulation by mCTLA4-H#x03931 inhibits antigen-induced lung eosinophilia but not Th2 cell development or recruitment in the lung. Eur. J. Immunol. 27:155-161 (1997).

    Google Scholar 

  12. J. R. Abrams, S. L. Kelley, E. Hayes, T. Kikuchi, M. J. Brown, S. Kang, M. G. Lebwohl, C. A. Guzzo, B. V. Jegasothy, P. S. Linsley, and J. G. Krueger. Blockade of T lymphocyte costimulation with cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plaques, including the activation of keratinocytes, dendritic cells, and endothelial cells. J. Exp. Med. 192:681-694 (2000).

    Google Scholar 

  13. M. G. Levisetti, P. A. Padrid, G. L. Szot, N. Mittal, S. M. Meehan, C. L. Wardrip, G. S. Gray, D. S. Bruce, J. R. ThistlethwaiteJr., and J. A. Bluestone. Immunosuppressive effects of human CTLA4Ig in a non-human primate model of allogeneic pancreatic islet transplantation. J. Immunol. 159:5187-5191 (1997).

    Google Scholar 

  14. A. D. Kirk, D. M. Harlan, N. N. Armstrong, T. A. Davis, Y. Dong, G. S. Gray, X. Hong, D. Thomas, J. H. FechnerJr., and S. J. Knechtle. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc. Natl. Acad. Sci. USA 94:8789-8794 (1997).

    Google Scholar 

  15. N. R. Srinivas, R. S. Weiner, G. Warner, W. C. Shyu, T. Davidson, C. G. Fadrowski, L. K. Tay, J. S. Lee, D. S. Greene, and R. H. Barbhaiya. Pharmacokinetics and pharmacodynamics of CTLA4lg (BMS-188667), a novel immunosuppressive agent, in monkeys following multiple doses. J. Pharm. Sci. 85:1-4 (1996).

    Google Scholar 

  16. D. D. Lasic and D. Papahadjopoulos. Liposomes revisited. Science 267:1275-1276 (1995).

    Google Scholar 

  17. K.-D. Lee, Y. K. Oh, D. A. Portnoy, and J. A. Swanson. Delivery of macromolecules into cytosol using liposomes containing hemolysin from Listeria monocytogenes. J. Biol. Chem. 271:7249-7252 (1996).

    Google Scholar 

  18. C. Provoda and K.-D. Lee. Bacterial pore-forming hemolysins and their use in the cytosolic delivery of macromolecules. Adv. Drug Deliv. Rev. 41:209-221 (2000).

    Google Scholar 

  19. D. Papahadjopoulos, T. M. Allen, A. Gabizon, E. Mayhew, K. Matthay, S. K. Huang, K. D. Lee, M. C. Woodle, D. D. Lasic, C. Redemann, and F. J. Martin. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc. Natl. Acad. Sci. USA 88:11460-11464 (1991)

    Google Scholar 

  20. D. Kirpotin, J. W. Park, K. Hong, S. Zalipsky, W. L. Li, P. Carter, C. C. Benz, and D. Papahadjopoulos. Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry 36:66-75 (1997).

    Google Scholar 

  21. C. B. Hansen, G. Y. Kao, E. H. Moase, S. Zalipsky, and T. M. Allen. Attachment of antibodies to sterically stabilized liposomes: evaluation, comparison and optimization of coupling procedures. Biochim. Biophys. Acta 1239:133-144 (1995).

    Google Scholar 

  22. T. M. Allen. Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol. Sci. 15:215-220 (1994).

    Google Scholar 

  23. T. Ishida, D. L. Iden, and T. M. Allen. A combinatorial approach to producing sterically stabilized (Stealth) immunoliposomal drugs. FEBS Lett. 460:129-133 (1999).

    Google Scholar 

  24. J. W. Park, D. B. Kirpotin, K. Hong, R. Shalaby, Y. Shao, U. B. Nielsen, J. D. Marks, D. Papahadjopoulos, and C. C. Benz. Tumor targeting using anti-her2 immunoliposomes. J. Control. Release 74:95-113 (2001).

    Google Scholar 

  25. G. Girolomoni, G. Zambruno, R. Manfredini, V. Zacchi, S. Ferrari, A. Cossarizza, and A. Giannetti. Expression of B7 costimulatory molecule in cultured human epidermal Langerhans cells is #x00AEulated at the mRNA level. J. Invest. Dermatol. 103:54-59 (1994).

    Google Scholar 

  26. E. L. Racoosin and J. A. Swanson. Macrophage colony-stimulating factor (rM-CSF) stimulates pinocytosis in bone marrow-derived macrophages. J. Exp. Med. 170:1635-1648 (1989).

    Google Scholar 

  27. D. D. Spragg, D. R. Alford, R. Greferath, C. E. Larsen, K. D. Lee, G. C. Gurtner, M. I. Cybulsky, P. F. Tosi, C. Nicolau, and M. A. GimbroneJr. Immunotargeting of liposomes to activated vascular endothelial cells: a strategy for site-selective delivery in the cardiovascular system. Proc. Natl. Acad. Sci. USA 94:8795-8800 (1997).

    Google Scholar 

  28. D. L. Daleke, K. Hong, and D. Papahadjopoulos. Endocytosis of liposomes by macrophages: binding, acidification and leakage of liposomes monitored by a new fluorescence assay. Biochim. Biophys. Acta 1024:352-366 (1990).

    Google Scholar 

  29. R. M. Straubinger, D. Papahadjopoulos, and K. L. Hong. Endocytosis and intracellular fate of liposomes using pyranine as a probe. Biochemistry 29:4929-4939 (1990).

    Google Scholar 

  30. P. E. Lacy and M. Kostianovsky. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16:35-39 (1967).

    Google Scholar 

  31. T. Allen and A. Chonn. Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett. 223:42-46 (1987).

    Google Scholar 

  32. T. Allen. Stealth liposomes: avoiding reticuloendothelial uptake. In Liposomes in the Therapy of Infectious Diseases and Cancer, Vol. 89, UCLA Symposium on Molecular and Cellular Biology, Alan R. Liss, Inc., New York, 1989 pp. 405-415.

    Google Scholar 

  33. K.-D. Lee, S. Nir, and D. Papahadjopoulos. Quantitative analysis of liposome-cell interactions in vitro: rate constants of binding and endocytosis with suspension and adherent J774 cells and human monocytes. Biochemistry 32:889-899 (1993).

    Google Scholar 

  34. K. Maruyama, N. Takahashi, T. Tagawa, K. Nagaike, and M. Iwatsuru. Immunoliposomes bearing polyethyleneglycol-coupled Fab’ fragment show prolonged circulation time and high extravasation into targeted solid tumors in vivo. FEBS Lett. 413:177-180 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Dall Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, CG., Thiex, N.W., Lee, KM. et al. Targeting and Blocking B7 Costimulatory Molecules on Antigen-Presenting Cells Using CTLA4Ig-Conjugated Liposomes: In Vitro Characterization and in Vivo Factors Affecting Biodistribution. Pharm Res 20, 1239–1248 (2003). https://doi.org/10.1023/A:1025057216492

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025057216492

Navigation