Skip to main content
Log in

The Arabidopsis SKP1-like genes present a spectrum of expression profiles

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The yeast Skp1 protein is a component of the SCF complex, an E3 enzyme involved in the specific protein degradation pathway via ubiquitination. Skp1 binds to F-box proteins to trigger specific recognition of proteins targeted for degradation. SKP1-like genes have been found in a variety of eukaryotes including yeast, man, Caenorhabditis elegans and Arabidopsis thaliana. The Arabidopsis genome contains 20 SKP1-like genes called ASK (for Arabidopsis SKP1-like), among which only ASK1 has been characterized in detail. The analysis of the expression pattern of the ASK genes in Arabidopsis should provide key information for the understanding of the biological role of this family in protein degradation and in different cellular mechanisms. In this paper, we describe the expression profiles of 19 ASK promoter-GUS fusions in stable transformants of Arabidopsis, with a special emphasis on floral organ development. Four ASK promoters did not show any detectable expression in either inflorescences or seedlings. Our results on the ASK1 expression profile are consistent with previous reports. Several ASK promoters show clear tissue-specific expression (for instance in the connective of anthers or in the embryo). We also found that almost half (9/19) of ASK promoters direct a post-meiotic expression in the male gametophyte. Tight regulation of the expression of this gene family indicates a crucial role of the ubiquitin degradation pathway during development, particularly during male gametophyte development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. 1990. Basic local alignement search tool. J Mol Biol 215: 403-410.

    Google Scholar 

  • Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815.

    Google Scholar 

  • Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J.W. and Elledge, S.J. 1996. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 56: 263-274.

    Google Scholar 

  • Bailey, T.L. and Elkan, C. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, AAAI Press, Menlo Park, CA, pp. 28-36.

    Google Scholar 

  • Bate, N. and Twell, D. 1998. Functional architecture of a late pollen promoter: pollen specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol. Biol. 37: 859-869.

    Google Scholar 

  • Bechtold, N., Ellis, J. and Pelletier, G. 1993. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad. Sci. Paris (III) 316: 1194-1199.

    Google Scholar 

  • Brunel, D., Froger, N. and Pelletier, G. 1999. Development of amplified consensus genetic markers (ACGM) in Brassica napus from Arabidopsis thaliana sequences of known biological function. Genome 42: 387-402.

    Google Scholar 

  • Callis, J. and Vierstra, R.D. 2000. Protein degradation signaling. Curr. Opin. Plant Biol. 3: 381-386.

    Google Scholar 

  • Cartea, M.E., Migdal, M., Galle, A.M., Pelletier, G. and Guerche, P. 1998. Comparision of sense and antisense methodologies for modifying the fatty acid composition of Arabidopsis thaliana oilseed. Plant Sci. 136: 181-194.

    Google Scholar 

  • Christensen, C.A., King, E.J., Jordan, J.R. and Dews, G.N. 1997. Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sex. Plant. Reprod. 10: 49-64.

    Google Scholar 

  • Ciechanover, A., Orian, A. and Schwartz, A.L. 2000. Ubiquitinmediated proteolysis: biological regulation via destruction. Bioessays 22: 442-451.

    Google Scholar 

  • Connelly, C. and Hieter, P. 1996. Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression. Cell 86: 275-285.

    Google Scholar 

  • Dieterle, M., Zhou, Y.-C., Schäfer, E., Funk, M. and Kretsch, T. 2001. EID1, an F-box protein involved in phytochrome A-specific light signaling. Genes Dev. 15: 939-944.

    Google Scholar 

  • Drouaud, J., Marrocco, K., Ridel, C., Pelletier, G. and Guerche, P. 2000. A Brassica napus skp1-like gene promoter drives GUS expression in Arabidopsis thaliana male and female gametophytes. Sex. Plant Reprod. 13: 29-35.

    Google Scholar 

  • Estelle, M.A. and Somerville, C.R. 1987. Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology. Mol. Gen. Genet. 206: 200-206.

    Google Scholar 

  • Eyal, Y., Curie, C. and McCormick, S. 1995. Pollen specificity elements reside in 30 bp of the proximal promoters of two pollen-expressed genes. Plant Cell 7: 373-384.

    Google Scholar 

  • Fourgoux-Nicol, A., Drouaud, J., Haouazine, N., Pelletier, G. and Guerche, P. 1999. Isolation of rapeseed genes expressed early and specifically during development of the male gametophyte. Plant Mol. Biol. 40: 857-872.

    Google Scholar 

  • Gagne, J.M., Downes, B.P., Shiu, S.-H., Durski, A.M. and Vierstra, R.D. 2002. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc. Natl. Acad. Sci. USA 99: 11519-11524.

    Google Scholar 

  • Gray, W.M., Del Pozo, J.C., Walker, L., Hobbie, L., Risseeuw, E., Banks, T., Crosby, W.L. Yang, M., Ma, H. and Estelle, M. 1999. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev. 13: 1678-1691.

    Google Scholar 

  • Herschko, A. and Ciechanover, A. 1998. The ubiquitin system. Annu. Rev. Biochem. 67: 425-479.

    Google Scholar 

  • Mercier, R., Vezon, D., Bullier, E., Motamayor, J.C., Sellier, A., Lefevre, F., Pelletier, G. and Horlow, C. 2001. Switch (SWI1): a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis. Genes Dev. 15: 1859-1871.

    Google Scholar 

  • Nacry, P., Camilleri, C., Courtial, B., Caboche, M. and Bouchez, D. 1998. Major chromosomal rearrangement induced by T-DNA transformation in Arabidopsis. Genetics 149: 641-650.

    Google Scholar 

  • Patton, E.E., Willems, A.R. and Tyers, M. 1998. Combinatorial control in ubiquitin-dependent proteolysis: don't Skp the F-box hypothesis. Trends Genet. 14: 236-243.

    Google Scholar 

  • Piechulla, B., Merforth, N. and Rudolph, B. 1998. Identification of tomato Lhc promoter regions necessary for circadian expression. Plant Mol. Biol. 38: 655-662.

    Google Scholar 

  • Thoma, S., Hecht, U., Kippers, A., Botella, J., de Vries, S. and Sommerville, C. 1994. Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis. Plant Physiol. 105: 35-45.

    Google Scholar 

  • Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673-4680.

    Google Scholar 

  • Twell, D. 2001. The developmental biology of pollen. In: S.D. O'Neill and J.A. Roberts (Eds.), Plant Reproduction, Sheffield Academic Press, Sheffield, UK, pp. 86-153.

    Google Scholar 

  • Twell, D., Yamaguchi, J., Wing, R.A., Ushiba, J. and McComick, S. 1991. Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shares regulatory elements. Genes Dev. 5: 496-507.

    Google Scholar 

  • Tyers, M. and Jorgensen, P. 2000. Proteolysis and the cell cycle: with this RING I do thee destroy. Curr. Opin. Genet. Dev. 10: 54-64.

    Google Scholar 

  • Xu, L., Liu, F., Lechner, E., Genschik, P., Crosby, W.L., Ma, H., Peng, W., Huang, D. and Xie, D. 2002. The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14: 1919-1935.

    Google Scholar 

  • Yamanaka, A., Yada, M., Imaki, H., Koga, M., Oshima, Y. and Nakayama, K.-I. 2002. Multiple Skp1-related proteins in Caenorhabditis elegans: diverse patterns of interaction with cullins and F-box proteins. Curr. Biol. 12: 267-275.

    Google Scholar 

  • Yang, M., Hu, Y., Lodhi, M., McCombie, W.R. and Ma, H. 1999. The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. Proc. Natl. Acad. Sci. USA 96: 11416-11421.

    Google Scholar 

  • Zhang, H., Kobayashi, R., Galaktionov, K. and Beach, D. 1995. p19Skp1 and p45Skp2 are essential elements of the cyclin ACDK2 S phase kinase. Cell 82: 915-925.

    Google Scholar 

  • Zhao, D.H., Yang, M., Solava, J. and Ma, H. 1999 The ASK1 gene regulates development and interacts with the UFO gene to control floral organ identity in Arabidopsis. Dev. Genet. 25: 209-223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Guerche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marrocco, K., Lecureuil, A., Nicolas, P. et al. The Arabidopsis SKP1-like genes present a spectrum of expression profiles. Plant Mol Biol 52, 715–727 (2003). https://doi.org/10.1023/A:1025056008926

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025056008926

Navigation