Skip to main content
Log in

Waste mixture composition by thermogravimetric analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work thermogravimetric analysis is applied to examine pyrolysis of single waste components and their blends in order to determine the composition of an unknown waste mixture. The superposition property is assumed, i.e. the mixture thermal degradation curve is obtained as the sum of the curves corresponding to its constituents. The results show that if blended, the individual components are more clearly recognised from the differential mass loss curves. This allows a better identification of the composition. Inaccuracy in determining the composition increases if interactions occur between components, which is the case for PVC-newspaper blend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. W. Kwant, Expert meeting on Power Production from Waste and Biomass IV, Advanced concepts and technologies, April 8–10, 2002, Espoo, Finland, p. 25.

  2. M. V. Kök, J. Therm. Anal. Cal., 68 (2002) 1061.

    Article  Google Scholar 

  3. M. Stengsen, A. Zolin, R. Cenni, F. Frandsen, A. Jensen and K. Dam-Johansen, J. Therm. Anal. Cal., 64 (2001) 1334.

    Google Scholar 

  4. V. Cozzani, A. Lucchesi and G. Stoppato, The Canad. J. Chem. Eng., 75 (1997) 127.

    Article  CAS  Google Scholar 

  5. T. Rajeswara Rao and A. Sharma, Energy, 23 (1998) 973.

    Article  Google Scholar 

  6. P. Ghetti, L. Ricca and L. Angelini, Fuel, 75 (1995) 565.

    Article  Google Scholar 

  7. J. J. M. Órfão, F. J. A. Antunes and J. L. Figueiredo, Fuel, 78 (1999) 349.

    Article  Google Scholar 

  8. K. Raveendran, A. Ganesh and K. C. Khilar, Fuel, 75 (1996) 998.

    Google Scholar 

  9. M. Stengsen, A. Jansen, K. Dam-Johansen and M. Grønli, Proc. of the 2nd Olle Lindström Symposium on renewable energy, Bioenergy, June 8–11, 1999, Stockholm, p. 97.

  10. L. Sørum, M. G. Grønli and J. E. Hustad, Fuel, 80 (2001) 1217.

    Article  Google Scholar 

  11. K. J. Fritsky, D. L. Miller and N. P. Cernansky, J. Air &; Waste Manage. Assoc., 44 (1994) 1116.

    CAS  Google Scholar 

  12. A. W. Coats and J. P. Redfern, Nature, 201 (1964) 68.

    Article  CAS  Google Scholar 

  13. C.-H. Wu, C.-Y. Chang and J.-P. Lin, J. Chem. Tech. Biotechnol., 68 (1997) 65.

    Article  CAS  Google Scholar 

  14. V. Cozzani, L. Petarca and L. Tognotti, Fuel, 74 (1995) 903.

    Article  CAS  Google Scholar 

  15. J. M. Ekmann, J. C. Winslow, S. M. Smouse and M. Ramezan, Fuel Processing Technology, 54 (1998) 171.

    Article  CAS  Google Scholar 

  16. S. Suntharalingam and G. Ravindran, Plant Foods Hum. Nutr., 43 (1993) 19.

    Article  CAS  Google Scholar 

  17. E. A. Phillips and S. D. Blazey, Thermochim. Acta, 192 (1991) 191.

    Article  CAS  Google Scholar 

  18. J. J. Kipling, J. N. Sherwood, P. V. Shooter and N. R. Thompson, Carbon, 1 (1964) 315.

    Article  CAS  Google Scholar 

  19. B. McGhee, F. Norton, C. E. Snape and P. J. Hall, Fuel, 74 (1995) 28.

    Article  CAS  Google Scholar 

  20. Y. Matsuzawa, M. Ayabe and J. Nishino, Polym. Degr. Stab., 71 (2001) 435.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heikkinen, J., Spliethoff, H. Waste mixture composition by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry 72, 1031–1039 (2003). https://doi.org/10.1023/A:1025051122704

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025051122704

Navigation