, Volume 132, Issue 3, pp 353–361 | Cite as

Identification of QTLs associated with yield and its components in Miscanthus sinensis Anderss

  • S.G. Atienza
  • Z. Satovic
  • K.K. Petersen
  • O. Dolstra
  • A. Martín


Yield and its components (stem-, leaf- and top-yield) were analyzed in a population derived from the cross between F1.1 andF1.7 entries of Miscanthus sinensisAnders. Both lines are offspring of the cross between MS-90-2 and MS-88-110. The aim of this work was to identify QTLs for yield and its components suitable to develop a Marker Aided Selection (MAS) program in M. sinensis.QTL analyses were performed using a previous linkage map based on RAPD markers which was constructed using a new mapping strategy named ‘offspring cross’ that is useful for mapping in forest and fruit trees. The MapQTL 4.0 package was used to perform QTL analyses. Twenty potential QTLs were detected over two years of analyses. Out of these, 6 were associated with yield,8 with stem-yield, 2 with leaf-yield and 4with top-yield. These results constitute an initial step to develop a MAS program for biomass production.

biomass marker aided selection (MAS) Miscanthus offspring cross QTL 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adati, S. & I. Shiotani, 1962. The cytotaxonomy of the genus Miscanthus and its phylogenic status. Bull Fac Agr Mie Univ 25: 1-24.Google Scholar
  2. Asíns, M.J., P.F. Maestre, J.E. García, F. Dicenta & E.A. Carbonell, 1994. Genotype × environment interaction in QTL analysis of an intervarietal almond cross by means of genetic markers. Theor Appl Genet 89: 358-364.CrossRefGoogle Scholar
  3. Atienza, S.G., Z. Satovic, K.K. Petersen, O. Dolstra & A. Martín, 2002. Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers. Theor Appl Genet 105: 946-952.PubMedCrossRefGoogle Scholar
  4. Churchill, G.A. & R.W. Doerge, 1994. Empirical threshold values for quantitative trait mapping. Genetics 138: 963-971.PubMedGoogle Scholar
  5. Clifton-Brown, J.C. & I. Lewandowski, 2002. Screening Miscanthus genotypes in field trials to optimise biomass yield and quality in Southern Germany. Eur J Agron 16: 97-110.CrossRefGoogle Scholar
  6. Conneally, P.M., J.H. Edwards, K.K. Kidd, J.-M. Lalouel, N. Morton, J. Ott & R. White, 1985. Report of the committee on methods of linkage analysis and reporting. Cytogenet Cell Genet 40: 356-359.PubMedCrossRefGoogle Scholar
  7. Conner, P.J., S.K. Brown & N.F. Weeden, 1998. Molecular-marker analysis of quantitative traits for growth and development in juvenile apple trees. Theor Appl Genet 96: 1027-1035.CrossRefGoogle Scholar
  8. Deuter, M. & J. Abraham, 1998. Genetic resources of Miscanthus and their use in breeding Biomass for energy and industry, Proceedings of the International conference Würzburg, 8-11 June. Würzburg, pp. 775-777.Google Scholar
  9. García, M.R., M.J. Asíns & E.A. Carbonell, 2000. QTL analysis of yield and seed number in Citrus. Theor Appl Genet 101: 487-493.CrossRefGoogle Scholar
  10. Greef, J.M. & M. Deuter, 1993. Syntaxonomy of Miscanthus × giganteus GREEF et DEU. Angew Bot 67: 87-90.Google Scholar
  11. Jansen, R.C., 1993. Interval mapping of multiple quantitative trait loci. Genetics 135: 205-211.PubMedGoogle Scholar
  12. Jansen, R.C., 1994. Controlling the type I and type II errors in mapping quantitative trait loci. Genetics 138: 871-881.PubMedGoogle Scholar
  13. Jansen, R.C. & P. Stam, 1994. High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136: 1447-1455.PubMedGoogle Scholar
  14. Jorgensen, U., 1997. Genotypic variation in dry matter accumulation and content of N, K and Cl in Miscanthus in Denmark. Biomass and Bioenergy 12: 155-169.CrossRefGoogle Scholar
  15. Kaya, Z., M.M. Sewell & D.B. Neale, 1999. Identification of quantitative trait loci influencing annual height-and diameterincrement growht in loblolly pine (Pinus taeda L.). Theor Appl Genet 98: 586-592.CrossRefGoogle Scholar
  16. Kearsey, M.J. & A.G.L. Farquhar, 1998. QTL analysis in plants; where are we now? Heridity 80: 137-142.CrossRefGoogle Scholar
  17. Knott, S.A. & C.S. Haley, 1992. Maximum likelihood mapping of quantitative trait loci using full-sib families. Genetics 132: 1211-1222.PubMedGoogle Scholar
  18. Knott, S.A., D.B. Neale, M.M. Sewell & C.S. Haley, 1997. Multiple marker mapping of quantitative trait loci in an outbred pedigree of loblolly pine. Theor Appl Genet 94: 810-820.CrossRefGoogle Scholar
  19. Lander, E.S. & D. Botstein, 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185-199.PubMedGoogle Scholar
  20. Lehmann, E.L., 1975. Nonparametrics, McGraw-Hill, New York.Google Scholar
  21. Lerceteau, E., A.E. Szmidt & B. Andersson, 2001. Detection of quantitative trait loci in Pinus sylvestris L. across years. Euphytica 121: 117-122.CrossRefGoogle Scholar
  22. Lewandowski, I. & A. Kicherer, 1997. Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus × giganteus. Eur J Agron 6: 163-177.CrossRefGoogle Scholar
  23. Lewandowski, I., J.C. Clifton-Brown, J.M.O. Scurlock & W. Huisman, 2000. Miscanthus: European experience with a novel energy crop. Biomass and Bioenergy 19: 209-227.CrossRefGoogle Scholar
  24. Linde-Laursen, I., 1993. Cytogenetic analysis of Miscanthus 'Giganteus' an interspecific hybrid. Hereditas 119: 297-300.CrossRefGoogle Scholar
  25. Maliepaard, C. & J.W. Van Ooijen, 1994. QTL mapping in a fullsib family of an outcrossing species. In: J.W. Van Ooijen and J. Jansen, J. (Eds.), Biometrics in Plant Breeding: Applications of Molecular Markers, pp. 140-146. Proc. of the ninth meeting of the EUCARPIA section biometrics in plant breeding, 6-8 July 1994, Wageningen, The Netherlands.Google Scholar
  26. Marques, C.M., J. Vasquez-Kool, V.J. Carocha, J.G. Ferreira, D.M. O'Malley, B-H Liu & R. Sederoff, 1999. Genetic dissection of vegetative propagation traits in Eucalyptus tereticornis and E. globulus. Theor Appl Genet 99: 936-946.CrossRefGoogle Scholar
  27. Nair, S., J.S. Bentur, U. Prasada Rao & M. Mohan, 1995. DNA markers tightly linked to a gall midge resistente gene (Gm2) are potentially useful for marker-aided selection in rice breeding. Theor Appl Genet 91: 68-73.Google Scholar
  28. Nielsen, P.N., 1990. Elefantengrassanbau in Dänemark-Praktikerbericht. Pflug und Spaten 3: 1-4.Google Scholar
  29. Paran, I. & R.W. Michelmore, 1993. Development f reliable PCR-based markers linked to downey mildew resistance genes in lettuce. Theor Appl Genet 85: 985-993.CrossRefGoogle Scholar
  30. Sewell, M.M., D.L. Bassoni, R.A. Megraw, N.C. Wheeler & D.B. Neale, 2000. Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). I. Physical wood properties. Theor Appl Genet 101: 1273-1281.CrossRefGoogle Scholar
  31. Sewell, M.M., M.F. Davis, G.A. Tuskan, N.C. Wheeler, C.C. Elam, D.L. Bassoni & D.B. Neale, 2002. Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties. Theor Appl Genet 104: 214-222.PubMedCrossRefGoogle Scholar
  32. Van Ooijen, J.W., 1992. Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84: 803-811.Google Scholar
  33. Van Ooijen, J.W., M.P. Boer, R.C. Jansen & C. Maliepaard, 2000. MapQTLTM version 4.0: software for the calculation of QTL positions on genetic maps. Plant Research International, Wageningen, the Netherlands.Google Scholar
  34. Verhaegen, D., C. & J.-M. Plomion, 1996. Genetic mapping in Eucalyptus urophylla and E. grandis using RAPD markers. Genome 39: 1051-1061.PubMedGoogle Scholar
  35. Williams, M.N.V., N. Pande, S. Nair, M. Mohan & J. Bennett, 1991. Restriction fragment length polymorphism analysis of polymerase chain reaction products amplified from mapped loci of rice (Oryza sativa L.) genomic DNA. Theor Appl Genet 82: 489-498.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • S.G. Atienza
    • 1
  • Z. Satovic
    • 2
  • K.K. Petersen
    • 3
  • O. Dolstra
    • 4
  • A. Martín
    • 1
  1. 1.Departamento de Agronomía y Mejora Genética VegetalInstituto de Agricultura Sostenible, Consejo Superior de Investigaciones CientíficasCórdobaSpain
  2. 2.Faculty of Agriculture, Department of Seed Science and TechnologyZagrebCroatia
  3. 3.Department of HorticultureDanish Institute of Agricultural SciencesAarslevDenmark
  4. 4.Plant Research InternationalWageningenThe Netherlands

Personalised recommendations