Skip to main content
Log in

The Absence of a Direct Relationship between the Ability of Yeasts to Grow at Elevated Temperatures and Their Survival after Lethal Heat Shock

  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The study of the growth of the yeasts Rhodotorula rubra, Saccharomyces cerevisiae, and Debaryomyces vanriji at elevated temperatures and their survival after transient lethal heat shock showed that the ability of these yeasts to grow at supraoptimal temperatures (i.e., their thermoresistance) and their ability to tolerate lethal heat shocks (i.e., their thermotolerance) are determined by different mechanisms. It is suggested that the thermotolerance of the yeasts is mainly determined by the division rate of cells before their exposure to heat shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Arthur, H. and Watson, K., Thermal Adaptation in Yeast: Growth Temperatures, Membrane Lipid, and Cytochrome Composition of Psychrophilic, Mesophilic, and Thermophilic Yeasts, J. Bacteriol., 1976, vol. 128,no. 1, pp. 56-68.

    Google Scholar 

  2. van Uden, N., Temperature Profiles of Yeasts, Adv. Microb. Physiol., 1984, vol. 25, pp. 195-251.

    Google Scholar 

  3. Sanchez, Y. and Lindquist, S., HSP104 Required for Induced Thermotolerance, Science, 1990, vol. 248,no. 4959, pp. 1112-1115.

    Google Scholar 

  4. Aleksandrov, V.Ya. and Kislyuk, I.M., Cell Response to Heat Shock: A Physiological Aspect, Tsitologiya, 1994, vol. 36,no. 1, pp. 5-59.

    Google Scholar 

  5. Reinders, A., Romano, I., Wiemken, A., and De Virgilio, C., The Thermophilic Yeast Hansenula polymorpha Does Not Require Trehalose Synthesis for Growth at High Temperatures but Does for Normal Acquisition of Thermotolerance, J. Bacteriol., 1999, vol. 181,no. 15, pp. 4665-4668.

    Google Scholar 

  6. Borkovich, K.A., Farrelly, F.W., Finkelstein, D.B., Taulien, J., and Lindquist, S., Hsp82 Is an Essential Protein That Is Required in Higher Concentrations for Growth of Cells at Higher Temperatures, Mol. Cell. Biol., 1989, vol. 9,no. 9, pp. 3919-3930.

    Google Scholar 

  7. Zhdanova-Pushkina, S.M., Osnovy rosta kul'tur mikroorganizmov (Fundamentals of Microbial Culture Growth), Leningrad: Len. Gos. Univ., 1983.

    Google Scholar 

  8. Rikhvanov, E.G., Borovskii, G.B., and Voinikov, V.K., Synthesis of Heat Shock Proteins in Debaryomyces vanriji Cells Grown at Different Temperatures, Fiziol. Rast. (Moscow), 1997, vol. 44,no. 1, pp. 59-63.

    Google Scholar 

  9. Walton, E.F. and Pringle, J.R., Effect of Growth Temperature upon Heat Sensitivity in Saccharomyces cerevisiae, Arch. Microbiol., 1980, vol. 124,no. 2/3, pp. 285-287.

    Google Scholar 

  10. Piper, P.W., Molecular Events Associated with Acquisition of Heat Tolerance by the Yeast Saccharomyces cerevisiae, FEMS Microbiol. Rev., 1993, vol. 11,no. 4, pp. 339-355.

    Google Scholar 

  11. Thevelein, J.M. and de Winde, J.H., Novel Sensing Mechanisms and Targets for the cAMP-Protein Kinase A Pathway in the Yeast Saccharomyces cerevisiae, Mol. Microbiol., 1999, vol. 33,no. 5, pp. 904-918.

    Google Scholar 

  12. Iida, H. and Yahara, I., A Heat Shock-Resistant Mutant of Saccharomyces cerevisiae Shows Constitutive Synthesis of Two Heat Shock Proteins and Altered Growth, J. Cell. Biol., 1984, vol. 99,no. 4, part 1, pp. 1441-1450.

    Google Scholar 

  13. Iida, H., Multistress Resistance of Saccharomyces cerevisiae Is Generated by Insertion of Retrotransposon Ty into the 5′ Coding Region of the Adenylate Cyclase Gene, Mol. Cell. Biol., 1988, vol. 8,no. 12, pp. 5555-5560.

    Google Scholar 

  14. Shin, D.Y., Matsumoto, K., Iida, H., Uno, I., and Ishikawa, T., Heat Shock Response of Saccharomyces cerevisiae Mutants Altered in Cyclic AMP-Dependent Protein Phosphorylation, Mol. Cell. Biol., 1987, vol. 7,no. 1, pp. 244-250.

    Google Scholar 

  15. Davidson, J.F., Whyte, B., Bissinger, P.H., and Schiestl, R.H., Oxidative Stress Is Involved in Heat-Induced Cell Death in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 1996, vol. 93,no. 10, pp. 5116-5121.

    Google Scholar 

  16. Moore, M.M., Breedveld, M.W., and Autor, A.P., The Role of Carotenoids in Preventing Oxidative Damage in the Pigmented Yeast Rhodotorula mucilaginosa, Arch. Biochem. Biophys., 1989, vol. 270,no. 2, pp. 419-431.

    Google Scholar 

  17. Rikhvanov, E.G., Varakina, N.N., Sozinov, D.Y., and Voinikov, V.K., Association of Bacteria and Yeasts in Hot Springs, Appl. Environ. Microbiol., 1999, vol. 65,no. 9, pp. 4292-4293.

    Google Scholar 

  18. Elliott, B. and Futcher, B., Stress Resistance of Yeast Cells Is Largely Independent of Cell Cycle Phase, Yeast, 1993, vol. 9,no. 1, pp. 33-42.

    Google Scholar 

  19. Park, J.I., Grant, C.M., Attfield, P.V., and Dawes, I.W., The Freeze-Thaw Stress Response of the Yeast Saccharomyces cerevisiae Is Growth Phase Specific and Is Controlled by Nutritional State via the RAS-Cyclic AMP Signal Transduction Pathway, Appl. Environ. Microbiol., 1997, vol. 63,no. 10, pp. 3818-3824.

    Google Scholar 

  20. Populyarnyi biologicheskii slovar' (Popular Biological Dictionary), Reimers, N.F., Ed., Moscow: Nauka, 1990 (Russian translation).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rikhvanov, E.G., Varakina, N.N., Rusaleva, T.M. et al. The Absence of a Direct Relationship between the Ability of Yeasts to Grow at Elevated Temperatures and Their Survival after Lethal Heat Shock. Microbiology 72, 423–427 (2003). https://doi.org/10.1023/A:1025036505147

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025036505147

Navigation