Skip to main content
Log in

Surface properties and in vitro analyses of immobilized chitosan onto polypropylene non-woven fabric surface using antenna-coupling microwave plasma

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Antenna coupling microwave plasma enables a highly efficient and oxidative treatment of the outermost surface of polypropylene (PP) non-woven fabric within a short time period. Subsequently, grafting copolymerization with acrylic acid (AAc) makes the plasma-treated fabric durably hydrophilic and excellent in water absorbency. With high grafting density and strong water affinity, the pAAc-grafted fabric greatly becomes feasible as an intensive absorbent and as a support to promote chitosan-immobilization through amide bonds. Experimental result demonstrated that surface analyses by FTIR-ATR have shown that R–CONH–R', amide binding were emerged between pAAc and chitosan. The XPS measurements on C1s 286.0 eV (C–OH), 286.5 eV (C–N) and 288.1 eV (O=C–NH) also could be found. Bioactivity assessments on the chitosan-immobilized surfaces were anticipated by activated partial thromboplastin time (aPTT), thrombin time (TT), and fibrinogen concentration. By means of cell counter we counted the ratio of blood cell adhesion on the modified fabric matrix. After human plasma incubated with the chitosan-immobilized PP fabrics, the required time for aPTT and blood cell adhesion increased significantly, while fibrinogen concentration and TT did not change. Due to the capability of anticoagulation and cell adhesion, the chitosan-immobilized PP fabric can be used as the substrate for cell culturing and then developed the wound-dressing substitute for second-degree burn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Q. Li, E. T. Dunn, E. W. Grandmaison and M. F. A. Goosen, J. Bioact. Compat. Polym. 7 (1992) 370.

    Google Scholar 

  2. S. Hirano and Y. Noishiki, J. Biomed. Mater. Res. 19 (1985) 413.

    Google Scholar 

  3. P. A. Sandford and A. Steinnes, in “Water-Soluble Polymers” (American Chemical Society, Washington DC, 1991) p. 430.

    Google Scholar 

  4. R. A. A. Muzzarelli, Carbohyd. Polym. 3 (1983) 53.

    Google Scholar 

  5. M. Amiji, Biomaterials 16 (1995) 593.

    Google Scholar 

  6. T. Chandy and C. P. Sharma, Biomater. Artif. cells Artif. Organs 18 (1990) 1.

    Google Scholar 

  7. S. Hirano, Y. Noishiki, J. Kinugawa, H. Higashima and T. Hayashi, in “Advances in Biomedical Polymers” (Plenum Press, New York, 1987) pp. 285-297.

    Google Scholar 

  8. J. I. Murata, Y. Ohya and T. Ouchi, Carbohyd. Polym. 29 (1996) 69.

    Google Scholar 

  9. V. R. Patel and M. Amiji, in “Hydrogels and Biodegradable Polymers for Bioapplications” (ACS Symposium Series Publication, Washington DC, 1996) pp. 209-220.

    Google Scholar 

  10. S. Minami, H. Suzuki, Y. Okamoto, T. Fujinaga and Y. Shigemasa, Carbohyd. Polym. 36 (1998) 151.

    Google Scholar 

  11. G. Brandenberg, L. G. Leibrock, R. Shuman, W. Q. Malette and H. Quigley, Neurosurgery 15 (1984) 9.

    Google Scholar 

  12. A. J. Rigby and S. C. Anand, Tech. Textiles Intern. (1996) 22.

  13. A. J. Rigby and S. C. Anand, ibid. (1996) 24.

  14. J. B. Kane, R. G. Tompkins, M. L. Yarmusb and J. F. Burke, in “Biomaterials Science: An Introduction to Materials in Medicine” (Academic Press, San Diego, CA, USA, 1996) pp. 360-370.

    Google Scholar 

  15. A. S. Hoffman, J. Appl. Polym. Sci.: Appl. Polym. Symp. 46 (1990) 341.

    Google Scholar 

  16. B. D. Ratner, Biosens. Bioelectron. 10 (1995) 797.

    Google Scholar 

  17. I. K. Kang, B. K. Kwon, J. H. Lee and H. B. Lee, Biomaterials 14 (1993) 792.

    Google Scholar 

  18. V. N. Vasilets, G. Hermel, U. Konig, C. Werner, M. Muller, F. Simon, K. Grundke, Y. Ikada and H. J. Jacobasch, ibid. 18 (1997) 1139.

    Google Scholar 

  19. J. C. Lin, Y. F. Chen and C. Y. Chen, ibid. 20 (1999) 1439.

    Google Scholar 

  20. H. Yasuda, in “Plasma polymerization” (Academic Press Inc., Orlando, FL, USA 1985) pp. 73-177.

    Google Scholar 

  21. J. D. Liao, M. C. Wang, C. C. Weng, R. Klauser, S. Frey, M. Zharnikov and M. Grunze, J. Phys. Chem. B 106 (2002) 77.

    Google Scholar 

  22. Y. C. Tyan, J. D. Liao, R. Kauser, I. D. Wu and C. C. Weng, Biomaterials 23 (2002) 65.

    Google Scholar 

  23. Y. C. Tyan, J. D. Liao, Y. T. Wu and K. Y. Hsu, Chin. J. Med. Biol. Eng. 20 (2000) 25.

    Google Scholar 

  24. J. D. Liao, ROC patent No. 325210, 1998.

  25. Y. Ikada and Y. Uyama, in “Lubricating Polymer Surface” (Techonmic Pub. Co., Lancaster, PA, USA, 1993) pp. 73-90.

    Google Scholar 

  26. Y. W. Chen, J. D. Liao, J. Y. Kau, J. Huang and W. T. Chang, Marcomolecules 33 (2000) 5638.

    Google Scholar 

  27. J. M. Yang, M. C. Wang, Y. G. Hsu, C. H. Chang and S. K. Lo, J. Appl. Polym. Sci. 138 (1998) 19.

    Google Scholar 

  28. J. M. Yang, Y. J. Jong, K. Y. Hsu and C. H. Chang, J. Biomed. Mater. Res. 39 (1998) 86.

    Google Scholar 

  29. S. D. Lee, G. H. Hsiue and C. Y. Kao, J. Appl. Polym. Sci. 34 (1996) 141.

    Google Scholar 

  30. A. Welle, J. D. Liao, K. Kaiser, M. Grunze, U. Mader and N. Blank, Appl. Surf. Sci. 119 (1997) 185.

    Google Scholar 

  31. J. R. Pawloski, R. V. Swaminathan and J. S. Stamler, Circulation 97 (1998) 263.

    Google Scholar 

  32. R. E. Lee, in “Scanning Electron Microscopy and X-ray Microanalysis” (PTR Prentice-Hall Inc., New Jersey, USA, 1993) p. 272.

    Google Scholar 

  33. Y. C. Tyan, J. D. Liao, Y. T. Wu and R. Kauser, Journal of Biomaterials Applications 17 (2002) 153-178.

    Google Scholar 

  34. J. D. Liao, Y. S. Yu and P. Wei, Chung Yuan J. 27 (1999) 89.

    Google Scholar 

  35. P. Wei, Ph.D. Thesis, The Pennsylvania State University, USA, 1995.

  36. A. Grill, in “A. Cold Plasma in Materials Fabrication, from Fundamentals to Application” (IEEE Press, New York, USA, 1993) p. 129.

    Google Scholar 

  37. M. A. Moharram, L. S. Balloomal and H. M. Elgendy, J. Appl. Polym. Sci. 59 (1996) 987-992.

    Google Scholar 

  38. J. D. Liao, T. H. Wu and T. L. Tseng, Proc. Soc. Mater. Sci. 1 (1997) 13.

    Google Scholar 

  39. S. Y. Nam and Y. M. Lee, J. Membr. Sci. 135 (1997) 161.

    Google Scholar 

  40. V. Chavasit, C. Kienzle-Sterzer and J. A. Torres, Polym. Bull. 19 (1988) 223.

    Google Scholar 

  41. J. Benesch and P. Tengvall, Biomaterials 23 (2002) 2561.

    Google Scholar 

  42. Y. Ito, M. Kajihara and Y. Imanishi, J. Biomed. Mater. Res. 20 (1986) 1157.

    Google Scholar 

  43. I. K. Kang, O. H. Kwon, Y. M. Lee and Y. K. Sung, Biomaterials 17 (1996) 841.

    Google Scholar 

  44. S. Zhang and K. E. Gonsalves, J. Appl. Polym. Sci. 56 (1995) 687.

    Google Scholar 

  45. J. F. Molder, W. F. Stickle, P. E. Sobol and K. D. Bomben, in “Handbook of X-ray Photoelectron Spectroscopy” (Physical Electronics, Inc. Minnesota, USA, 1995) pp. 42-43.

    Google Scholar 

  46. G. Beamson, D. Briggs, in “High Resolution XPS of Organic Polymers. The Scienta ESCA300 Database” (Wiley & Sons Inc., New York, USA, 1992) p. 110, Appendix 1–4.

    Google Scholar 

  47. S. B. Rao and C. P. Sharma, J. Biomed. Mater. Res. 34 (1997) 21.

    Google Scholar 

  48. E. T. Klokkevold and H. Fukayama, J. Oral Maxillofac. Surg. 57 (1999) 49.

    Google Scholar 

  49. K. D. Park, A. Z. Piao, H. A. Jacobs, T. Okano and S. W. Kim, J. Polym. Sci. Part A: Polym. Chem. 29 (1991) 1725.

    Google Scholar 

  50. H. C. Hemker, A. V. Bendetowicz and S. Béguin, Thrombo. Res. Suppl. XIV (1991) 1.

    Google Scholar 

  51. C. Mannhalter, Sens. Actuator B 11 (1993) 273.

    Google Scholar 

  52. D. K. Han, N. Y. Lee, K. D. Park, Y. H. Kim, H. I. Cho and B. G. Min, Biomaterials 16 (1995) 467.

    Google Scholar 

  53. J. Dutkiewicz, L. Szosland, M. Kucharska, L. Judkiewicz and R. Ciszewski, J Bioact. Compat. Polym. 5 (1990) 293.

    Google Scholar 

  54. A. Pugnaloni, G. Lai, F. Ravaglia, M. Santori, D. Piciptti, G. Sprovieri, R. A. Muzzarelli, M. Emanuelli, P. Sapelli and V. Baldassarre, Clin. Lab. 10 (1986) 151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Chang Tyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyan, YC., Liao*, JD. & Lin, SP. Surface properties and in vitro analyses of immobilized chitosan onto polypropylene non-woven fabric surface using antenna-coupling microwave plasma. Journal of Materials Science: Materials in Medicine 14, 775–781 (2003). https://doi.org/10.1023/A:1025036421604

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025036421604

Keywords

Navigation