Skip to main content
Log in

The reticuloplasmin calreticulun is released into the medium by carrot cell cultures

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

We report here the presence of a 58-kDa protein in the cells of Daucus carota L. cultivated in vitro. Two lines of carrot cells are used: wild-type line (wt) and mutant line (ts11). We describe here also presence of this protein in the media of cultured cells. Strong reaction of this intracellular and extracellular protein with an anti-calreticulin antiserum indicates that it is a major high capacity, low affinity Ca2+-binding reticuloplasmin–calreticulin. No differences in biochemical characterization is found between calreticulin purified from the wild-type line and the mutant line. Moreover molecular mass, type of glycosylation and the ability of extracellular protein to bind calcium is found to be indistinguishable from those of the purified intracellular calreticulin. Calreticulin release is attributed to some stress imposed on cultured cells by growth conditions. It is shown that this process can be also induced in CR-non-releasing systems such as carrot somatic embryos by applying a high-cell-density stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrin C, Pinkoski MJ, Burns K, Atkinson EA, Krahenbuhl O, Hudig D, Fraser SA, Winkler U, Tschopp J, Opas M, Bleackley RC & Michalak M (1998) Interaction between a Ca2+-binding protein calreticulin and perforin, a component of the cytotoxic T-cell granules. Biochemistry 37: 10386–10394

    Google Scholar 

  • Baker CJ & Mock NM (1994) An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans Blue. Plant Cell Tiss. Org. Cult. 39: 7–12

    Google Scholar 

  • Baldan B, Guzzo F, Filippini F, Gasparian M, LoSchiavo F, Vitale A, De Vries SC, Mariani P & Terzi M (1997) The secretory nature of the lesion of carrot cell variant ts11, rescuable by endochitinase. Planta 209: 381–389

    Google Scholar 

  • Baluška F, Šamaj J, Napier R & Volkmann D (1999) Maize calreticulin localizes preferentially to plasmodesmata in root apex. Plant J. 19: 481–488

    Google Scholar 

  • Borisjuk N, Borisjuk LG, Logendra S, Petersen F, Gleba Y & Raskin I (1999) Production of recombinant proteins in plant root exudates. Nat. Biotech. 17: 466–469

    Google Scholar 

  • Borisjuk N, Sitailo L, Adler K, Malysheva L, Tewes A, Borisjuk LR & Manteuffel R (1998) Calreticulin expression in plant cells: developmental regulation, tissue specificity and intracellular distribution. Planta 206: 504–514

    Google Scholar 

  • Booth C & Koch GLE (1989) Perturbation of cellular calcium induces secretion of luminal ER proteins. Cell 59: 729–737

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantita-tion of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254

    Google Scholar 

  • Chen F, Hayes PM, Mulrooney DM & Pan A (1994) Identification and characterization of cDNA clones encoding plant calreticulin in barley. Plant Cell 8: 835–943

    Google Scholar 

  • Coughlan SJ, Craig H & Winfrey R (1997) Cloning and characterization of the calreticulin gene from Ricinus communis L. Plant Mol. Biol. 34: 897–911

    Google Scholar 

  • Crofts AJ & Denecke J (1998) Calreticulin and calnexin in plants. Trends Plant Sci. 3: 396–399

    Google Scholar 

  • Crofts AJ, Leborgne-Castel N, Pesca M, Vitale A & Denecke J (1998) BiP and calreticulin form an abundant complex that is independent of endoplasmic reticulum stress. Plant Cell 10: 813–823

    Google Scholar 

  • Dainese P, James P, Baldan B & Carafoli E (1997) Subcellular and tissue distribution, partial purification, and sequencing of cal-modulin-stimulated Ca2+-transporting ATPases from barley (Hordeum vulgare L.) and tobacco (Nicotiana tabacum L.). Eur. J. Biochem. 244: 31–38

    Google Scholar 

  • Denecke J, Carlsson LE, Vidal SA, Hoglund AS, Ek B, Van Zeijl MJ, Sinjorgo KMC & Palva ET (1995) The tobacco homolog of mammalian calreticulin is present in protein complexes in vivo. Plant Cell 7: 391–406

    Google Scholar 

  • deVries SC, Booij H, Meyering P, Huisman G, Wilde HD, Thomas LT & van Kammen A (1988) Acquisition of embryogenic potential in carrot cell-suspension cultures. Planta 176: 194–204

    Google Scholar 

  • Fliegel L, Burns K, McLennan DH, Reithmeier RAF & Michalak M (1989) Molecular cloning of the high affinity calcium binding protein (calreticulin) of sceletal muscle sarcoplasmic reticulum. J. Biol. Chem. 264: 21522–21528

    Google Scholar 

  • Gamborg OL, Miller RA & Ojima K (1968) Nutrient requirement of suspension culture of soybean root cell. Exp. Cell Res. 50: 151–158

    Google Scholar 

  • Giuliano G, LoSchiavo F & Terzi M (1994) Isolation and de-velopmental characterization of temperature-sensitive carrot cell variants. Theor. Appl. Gen. 67: 179–183

    Google Scholar 

  • Halperin W (1964) Morphogenetic studies with partially synchron-ized cultures of carrot embryos. Science 146: 408–410

    Google Scholar 

  • Hammond C & Helenius A (1995) Quality control in the secretory pathway. Curr. Opin. Cell Biol. 7: 523–529

    Google Scholar 

  • Hendriks T & De Vries SC (1995) The role of secreted proteins in carrot somatic embryogenesis. In: Terzi M, Cella R & Falavigna A (eds) Current Issues in Plant Molecular and Cellular Biology (pp. 359–368). Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Higashi K, Daita M, Kobayashi T, Sasaki K, Harada H & Kamada H (1998) Inhibitory conditioning for carrot somatic embryo-genesis in high-cell-density cultures. Plant Cell Rep. 18: 2–6

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Google Scholar 

  • Libik M & Przywara L (2000) Immunolocalization of calreticulin in protoplasts and somatic embryos of Daucus carota L. grown in suspension culture. Acta Biol. Cracov. 42: 87–92

    Google Scholar 

  • Maruyama K, Mikawa T & Ebashi S (1984) Detection of calcium 45 binding proteins by Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. J. Biochem. 95: 511–519

    Google Scholar 

  • McCauliffe DF, Lux FA, Lieu TS, Sanz I, Hanke J, Newkirk MM, Bachinski L, Itoh F, Siciliano MJ, Reichlin M, Sontheimer RD & Capra JD (1990) Molecular cloning, expression and chromosome 19 localization of human Ro/SS-A autoantigen. J. Clin. Invest. 85: 1379–1391

    Google Scholar 

  • Meldolesi J, Krause K-H & Michalak M (1996) Calreticulin: how many functions in how many cellular compartments? Cell Calcium 20: 83–86

    Google Scholar 

  • Michalak M, Mariani P & Opas M (1998) Calreticulin, a multi-functional Ca2+ binding chaperone of the endoplasmic reticulum. Biochem. Cell Biol. 76: 779–785

    Google Scholar 

  • Milner RE, Baksh S, Shemancho C, Carpenter MR, Smillie L, Vance JE, Opas M & Michalak M (1991) Calreticulin, and not calsequestrin is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. J. Biol. Chem. 226: 7155–7165

    Google Scholar 

  • Napier RM, Trueman S, Henderson J, Boyce J, Hawes C, Fricker MD & Venis MA (1995) Purification, sequencing and functions of calreticulin from maize. J. Exp. Bot. 46: 1603–1613

    Google Scholar 

  • Nardi MC, Giacomelli F, Dainese P, Fitchette-Laine A-C, Faye L, Baldan B, Navazio L & Mariani P (1998) Ginkgo biloba expres-ses calreticulin, the major calcium-binding reticuloplasmin in eukaryotic cells. Bot. Acta 111: 66–70

    Google Scholar 

  • Navazio L, Baldan B, Dainese P, James P, Damiani E, Margreth A & Mariani P (1995) Evidence that spinach leaves express calreticulin but not Calsequestrin. Plant Physiol. 109: 983–990

    Google Scholar 

  • Navazio L, Baldan B, Mariani P, Gerwig GJ & Vliegenthart JF (1996) Primary structure of the N-linked carbohydrate chains of calreticulin from spinach leaves. Glycoconjugate J. 13: 977–983

    Google Scholar 

  • Navazio L, Nardi MC, Pancaldi S, Dainese P, Baldan B, Fitchette-Lainé A-C, Faye L, Meggio F, Martin W & Mariani P (1998) Functional conservation of calreticulin in Euglena gracilis. J. Euk. Microbiol. 45: 307–313

    Google Scholar 

  • Opas M, Tharin S, Milner RE & Michalak M (1996) Identification and localization of calreticulin in plant cells. Protoplasma 191: 164–171

    Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5: 1411–1423

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Libik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Libik, M., Miszalski, Z., Przywara, L. et al. The reticuloplasmin calreticulun is released into the medium by carrot cell cultures. Plant Cell, Tissue and Organ Culture 75, 109–116 (2003). https://doi.org/10.1023/A:1025032612463

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025032612463

Navigation