Skip to main content
Log in

Interaction of B7RP-1 with ICOS Negatively Regulates Antigen Presentation by B Cells

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Stimulation of T cells through the T cell receptor is insufficient for optimal T cell activation. A second activation signal is necessary, being usually provided by the costimulatory molecule CD28. Recently, additional costimulatory pathways have been identified, including inducible costimulator (ICOS) and its ligand B7RP-1. We have examined the role of the B7RP-1/ICOS costimulatory pathway on antigen presentation by B cells, using the I-Ak and I-Ek-positive CH27 B cell line and several different T cell lines. We found that CH27 expressed B7RP-1 and PD-L1 whereas the T cell lines expressed ICOS and PD-1. In the presence of HEL, the T cell hybridomas C10 and 3A9 released IL-2, which is indicative of antigen-specific T cell activation by the CH27 cells. Unexpectedly, blocking antibodies for B7RP-1 and ICOS enhanced the IL-2 response in both T cells. As expected, an increase in the production of IL-2 was seen when blocking antibodies for PD-1 were used. Blocking with antibodies for I-Ak, CD28, B7.1, and B7.2 lead to a decrease in IL-2 production. Additionally we tested a Th1 and a Th2 T cell clone. Blockade of B7RP-1/ICOS lead to an increased IFN-γ response in Th1 cells (A.E7) and an increased IL-4 response in Th2 cells (D10.G4.1). Intracellular staining also showed an increase in cytokine production when the B7RP-1/ICOS pathway was blocked. In conclusion, the B7RP-1/ICOS pathway is negatively regulating T cell activation by B cells and may play a role similar to that of the PD-L1/PD-1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. June, C. H., J. A. Bluestone, L.M. Nadler, and C. B. Thompson. 1994. The B7 and CD28 receptor families. Immunol. Today 15:321–331.

    Google Scholar 

  2. Schwartz, R. H. 1990. A cell culture model for T lymphocyte clonal anergy. Science 248:1349–1356.

    Google Scholar 

  3. Van Parijs, L. and A. K. Abbas. 1998. Homeostasis and self-tolerance in the immune system: Turning lymphocytes off. Science 280:243–248.

    Google Scholar 

  4. Bluestone, J. A. 1997. Is CTLA-4 a master switch for peripheral T cell tolerance? J. Immunol. 158:1989–1993.

    Google Scholar 

  5. Yoshinaga, S. K., J. S. Whoriskey, S. D. Khare, U. Sarmiento, J. Guo, T. Horan, G. Shih, M. Zang, M. A. Coccia, T. Kohno, A. Tafuri-Bladt, and B. Brankow. 1999 T-cell co-stimulation through B7RP-1 and ICOS. Nature 402:827–832.

    Google Scholar 

  6. Hutloff, A., A. M. Dittrich, K. C. Beier, B. Eljaschewitsch, R. Kraft, I. Anagnostopoulos, and R. A. Kroczek. 1999. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397:263–266.

    Google Scholar 

  7. Aicher, A., M. Hayden-Ledbetter, W. A. Brady, A. Pezzutto, G. Richter, D. Magaletti, S. Buckwalter, J. A. Ledbetter, and E. A. Clark. 2000. Characterization of human inducible costimulator ligand expression and function. J. Immunol. 164:4689–4696.

    Google Scholar 

  8. Mages, H. W., A. Hutloff, C. Heuck, K. Buchner, H. Himmelbauer, F. Oliveri, and R. A. Kroczek. 2000. Molecular cloning and characterization of murine ICOS and identification of B7h as ICOS ligand. Eur. J. Immunol. 30:1040–1047.

    Google Scholar 

  9. Chambers, C. A. 2001. The expanding world of co-stimulation: The two-signal model revisited. Trends Immunol. 22:217–23.

    Google Scholar 

  10. Nishimura, H. and T. Honjo. 2001. PD-1: An inhibitory immunoreceptor involved in peripheral tolerance. Trends Immunol. 22:265–268.

    Google Scholar 

  11. Ozkaynak, E., W. Gao, N. Shemmeri, C. Wang, J. C. Gutierrez-Ramos, J. Amaral, S. Qin, J. B. Rottman, A. J. Coyle, and W. W. Hancock. Importance of ICOS-B7RP-1 costimulation in acute and chronic allograft rejection. Nat. Immunol. 2:591–596.

  12. Wahl, P., R. Schoop, G. Bilic, J. Neuweiler, M. Le Hir, S. K. Yoshinaga, and R. P. Wüthrich. 2002. Renal tubular epithelial expression of the costimulatory molecule B7RP-1 (ICOS ligand). J. Am. Soc. Nephrol. 13:1517–1526.

    Google Scholar 

  13. Dong, C., U. A. Temann, and R. A. Flavell. 2001. Cutting edge: Critical role of inducible costimulator in germinal center reactions. J. Immunol. 166: 3659–3662.

    Google Scholar 

  14. Tafuri, A., A. Shahinian, F. Bladt, S. K. Yoshinaga, M. Jordana, A. Wakeham, L. M. Boucher, D. Bouchard, V. S. Chan, G. Duncan, B. Odermatt, A. Ho, A. Itie, T. Horan, J. S. Whoriskey, T. Pawson, J. M. Penninger, P. S. Ohashi, and T. W. Mak. 2001. ICOS is essential for effective T-helper-cell responses. Nature 409:105–109.

    Google Scholar 

  15. Dong, C., A. E. Juedes, U. A. Temann, S. Shresta, J. P. Allison, N. H. Ruddle, and R. A. Flavell. 2001. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409:97–101.

    Google Scholar 

  16. Rottman, J. B., T. Smith, J. R. Tonra, K. Ganley, T. Bloom, R. Silva, B. Pierce, J. C. Gutierrez-Ramos, E. özkaynak, and A. J. Coyle. 2001. The costimulatory molecule ICOS plays an important role in the immunopathogenesis of EAE. Nat. Immunol. 2:605–611.

    Google Scholar 

  17. Wüthrich, R. P., L. H. Glimcher, M. A. Yui, A. M. Jevnikar, S. E. Dumas, and V. E. Kelley. 1990. Generation of highly differentiated murine renal tubular epithelial cell lines MHC class II regulation, antigen presentation and tumor necrosis factor production. Kidney Int. 37:783–792.

    Google Scholar 

  18. Jevnikar, A. M., R. P. Wüthrich, F. Takei, H. W. Xu, D. C. Brennan, L. H. Glimcher, and V. E. Rubin-Kelley. 1990. Differing regulation and function of ICAM-1 and class II antigens on renal tubular cells. Kidney Int. 38:417–425.

    Google Scholar 

  19. Hagerty, D. T. and P. M. Allen. 1992. Processing and presentation of self and foreign antigens by the renal proximal tubule. J. Immunol. 148:2324–2330.

    Google Scholar 

  20. Hudson, L. and F. C. Hay. 1980. Practical Immunology, 2nd edn. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  21. Allen, P. M. and E. R. Unanue. 1984. Differential requirements for antigen processing by macrophages for lysozyme-specific T cell hybridomas. J. Immunol. 132:1077–1079.

    Google Scholar 

  22. Allen, P. M., G. R. Matsueda, E. Haber, and E. R. Unanue. 1985. Specificity of the T cell receptor: Two different determinants are generated by the same peptide and the Iak molecule. J. Immunol. 135:368–373.

    Google Scholar 

  23. Nabavi, N., Z. Ghogawala, A. Myer, I. J. Griffith, W. F. Wade, Z. Z. Chen, D. J. McKean, and L. H. Glimcher. 1989. Antigen presentation abrogated in cells expressing truncated Ia molecules. J. Immunol. 142:144–147.

    Google Scholar 

  24. Lederer, J. A., J. S. Liou, M. D. Todd, L. H. Glimcher, and A. H. Lichtman. 1994. Regulation of cytokine gene expression in T helper cell subsets. J. Immunol. 152:77–86.

    Google Scholar 

  25. Benz, P. S., X. Fan, and R. P. Wüthrich. 1996. Enhanced CD44 expression in MRL-lpr lupus nephritis. Kidney Int. 50:156–163.

    Google Scholar 

  26. Mueller, D. L. 2000. T cells: A proliferation of costimulatory molecules. Curr. Biol. 10:R227-R230.

    Google Scholar 

  27. Coyle, A. J. and J. C. Gutierrez-Ramos. 2001. The expanding B7 superfamily: Increasing complexity in costimulatory signals regulating T cell function. Nat. Immunol. 2:203–209.

    Google Scholar 

  28. Swallow, M. M., J. J. Wallin, and W. C. Sha. 1999. B7h, a novel costimulatory homolog of B7.1 and B7.2, is induced by TNF alpha. Immunity 11:423–432.

    Google Scholar 

  29. Salomon, B. and J. A. Bluestone. 2001. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol. 19:225–9252.

    Google Scholar 

  30. Carter, L. L., L. A. Fauser, J. Jussif, L. Fitz, B. Deng, C. R. Wood, M. Collins, T. Honjo, G. J. Freeman, and B. M. Carreno. 2002. PD-1:PD-L inhibitory pathway affects both CD4+ and CD8+ T cells and is overcome by IL-2. Eur. J. Immunol. 32: 634–643.

    Google Scholar 

  31. Freeman, G. J., A. J. Long, Y. Iwai, K. Bourque, T. Chernova, H. Nishimura, L. J. Fitz, N. Malenkovich, T. Okazaki, M. C. Byrne, H. F. Horton, L. Fouser, L. Carter, V. Ling, M. R. Bowman, B. M. Carreno, M. Collins, C. R. Wood, and T. Honjo. 2000. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192:1027–1034.

    Google Scholar 

  32. Latchman, Y., C. R. Wood, T. Chernova, D. Chaudhary, M. Borde, I. Chernova, Y. Iwai, A. J. Long, J. A. Brown, R. Nunes, E. A. Greenfield, K. Bourque, V. A. Boussiotis, L. L. Carter, B. M. Carreno, N. Malenkovich, H. Nishimura, T. Okazaki, T. Honjo, A. H. Sharpe, and G. J. Freeman. 2001. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2:261–268.

    Google Scholar 

  33. Nishimura, H., M. Nose, H. Hiai, N. Minaro, and T. Honjo. 1999. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11:141–151.

    Google Scholar 

  34. Eppihimer, M. J., J. Gunn, G. J. Freeman, E. A. Greenfield, T. Chernova, J. Erickson, and J. P. Leonard. 2002. Expression and regulation of the PD-L1 immunoinhibitory molecule on microvascular endothelial cells. Microcirculation 9:133–145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf P. Wüthrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahl, P., Schoop, R., Horan, T.P. et al. Interaction of B7RP-1 with ICOS Negatively Regulates Antigen Presentation by B Cells. Inflammation 27, 191–200 (2003). https://doi.org/10.1023/A:1025032429697

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025032429697

Navigation