Skip to main content
Log in

Xenobiotic Bioconversion in Human Epidermis Models

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

There is a great need for alternative experimental methods for measuring percutaneous xenobiotic biotransformation. Animal testing and excised human skin studies have been the historical standards for confirmation of therapeutic and toxic effects that occur in the skin as a result of drug and other chemical metabolism. Human skin epidermal bioequivalents have become progressively more used for these types of pharmacological/toxicological studies in recent years. These epidermal models have been used in the form of cell culture, tissue sheets, and highly differentiated epidermal and epidermal/dermal systems. This review highlights the existing published data on the utility of these skin bioequivalent models for various types of metabolism and toxicology studies that should be of interest to the dermatopharmaceutical scientist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Pouliot, L. Germain, F. A. Auger, N. Tremblay, and J. Juhasz. Physical characterization of the stratum corneum of an in vitro human skin equivalent produced by tissue engineering and its comparison with normal human skin by ATR-FTIR spectroscopy and thermal analysis (DSC). Biochim. Biophys. Acta 1439:341-352 (1999).

    Google Scholar 

  2. F. P. Schmook, J. G. Meingassner, and A. Billich. Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption. Int. J. Pharm. 215:51-56 (2001).

    Google Scholar 

  3. M. Ponec, S. Gibbs, G. Pilgram, E. Boelsma, H. Koerten, J. Bouwstra, and M. Mommaas. Barrier function in reconstructed epidermis and its resemblance to native human skin. Skin Pharmacol. Appl. Skin Physiol. 14(ppl. 1):63-71 (2001).

    Google Scholar 

  4. M. Rosdy and L. C. Clauss. Terminal epidermal differentiation of human keratinocytes grown in chemically defined medium on inert filter substrates at the air-liquid interface. J. Invest. Dermatol. 95:409-414 (1990).

    Google Scholar 

  5. L. M. Wilkins, S. R. Watson, S. J. Prosky, S. F. Meunier, and N. L. Parenteau. Development of a bilayered living skin construct for clinical applications. Biotechnol. Bioeng. 43:747-756 (1994).

    Google Scholar 

  6. D. Asselineau, B. Bernhard, C. Bailly, and M. Darmon. Epidermal morphogenesis and induction of the 67 kD keratin polypeptide by culture of human keratinocytes at the liquid-air interface. Exp. Cell Res. 159:536-539 (1985).

    Google Scholar 

  7. A. Casasco, M. Casasco, N. Zerbinati, A. I. Cornaglia, and A. Calligaro. Cell proliferation and differentiation in a model of human skin equivalent. Anat. Rec. 264:261-272 (2001).

    Google Scholar 

  8. E. Boelsma, S. Gibbs, C. Faller, and M. Ponec. Characterization and comparison of reconstructed skin models: morphological and immunohistochemical evaluation. Acta Derm. Venereol. 80:82-88 (2000).

    Google Scholar 

  9. A. H. Kennedy, G. M. Golden, C. L. Gay, R. H. Guy, M. L. Francoeur, and V. H. W. Mak. Stratum corneum lipids of human epidermal keratinocyte air-liquid cultures: implications for barrier function. Pharm. Res. 13:1162-1167 (1996).

    Google Scholar 

  10. M. Michel, L. Germain, P. M. Belanger, and F. A. Auger. Functional evaluation of anchored skin equivalent cultured in vitro: percutaneous absorption studies and lipid analysis. Pharm. Res. 12:455-458 (1995).

    Google Scholar 

  11. A. El-Kattan, K. Creek, P. Wertz, and B. Michniak. Evaluation of a human bio-engineered skin equivalent for drug permeation studies. Pharm. Res. 17:1092-1097 (2000).

    Google Scholar 

  12. A. Black, O. Damour, and K. Schlotmann. Investigating human skin barrier lipids with in vitro skin models. In T. Förster (ed.), Cosmetic Science and Technology Series, Cosmetic Lipids and the Skin Barrier, Marcel Dekker, New York, 2002, pp. 121-147.

    Google Scholar 

  13. J. G. Rheinwald and H. Green. Serial cultivation of strains of human keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331-344 (1975).

    Google Scholar 

  14. S. T. Boyce. Methods for the serum-free culture of keratinocytes and transplantation of collagen-GAG-based skin substitutes. Methods Mol. Med. 18:365-389 (1999).

    Google Scholar 

  15. I. A. Bernstein and F. L. Vaughan. Cultured keratinocytes in in vitro dermatotoxicological investigation: a review. J. Toxicol. Environ. Health. Part B. Cri. Rev. 2:1-30 (1999).

    Google Scholar 

  16. Y. Barlow and R. J. Pye. Keratinocyte culture. In Methods in Molecular Biology. 75:117-129.

  17. P. Boukamp, R. T. Petrussevska, D. Breitkreutz, J. Hornung, A. Markham, and N. E. Fusenig. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 106:761-771 (1988).

    Google Scholar 

  18. I. Steinsträsser, K. Koopmann, and H. P. Merkle. Epidermal aminopeptidase activity and metabolism as observed in an organized HaCaT cell sheet model. J. Pharm. Sci. 86:378-383 (1997).

    Google Scholar 

  19. P. Boderke, K. Schittkowski, M. Wolf, and H. P. Merkle. Modeling of diffusion and concurrent metabolism in cutaneous tissue. J. Theor. Biol. 204:393-407 (2000).

    Google Scholar 

  20. C. Doebis, T. Ritter, C. Brandt, B. Schönberger, H. D. Volk, and M. Seifert. Efficient in vitro transduction of epithelial cells and keratinocytes with improved adenoviral gene transfer for the application in skin tissue engineering. Transpl. Immunol. 9:323-329 (2002).

    Google Scholar 

  21. R. Altenburger and T. Kissel. The human keratinocyte cell line HaCaT: an in vitro cell culture model for keratinocyte testosterone metabolism. Pharm. Res. 16:766-771 (1999).

    Google Scholar 

  22. M. A. Pham, J. Magdalou, G. Siest, M. C. Lenoir, B. A. Bernard, J. C. Jamoulle, and B. Shroot. Reconstituted epidermis: a novel model for the study of drug metabolism in human epidermis. J. Invest. Dermatol. 94:749-752 (1990).

    Google Scholar 

  23. R. Roguet and H. Schaefer. Overview of in vitro cell culture technologies and pharmaco-toxicological applications. Toxicol. In Vitro 11:591-599 (1997).

    Google Scholar 

  24. L. P. Bernhofer, M. Seiberg, and K. M. Martin. The influence of the response of skin equivalent systems to topically applied consumer products by epithelial-mesenchymal interactions. Toxicol. In Vitro 13:219-229 (1999).

    Google Scholar 

  25. D. Hoeller, B. Huppertz, T. C. Roos, P. P. Gutierrez, H. F. Merk, J. Frank, and F. K. Jugert. An improved and rapid method to construct skin equivalents from human hair follicles and fibroblasts. Exp. Dermatol. 10:264-271 (2001).

    Google Scholar 

  26. M. Archambault, M. Yaar, and B. A. Gilchrest. Keratinocytes and fibroblasts in a human skin equivalent model enhance melanocyte survival and melanin synthesis after ultraviolet irradiation. J. Invest. Dermatol. 104:859-867 (1995).

    Google Scholar 

  27. B. Hirel, E. Watier, C. Chesne, M. Patoux-Pibouin, and A. Guillouzo. Culture and drug biotransformation capacity of adult human keratinocytes from post-mortem skin. Br. J. Dermatol. 134:831-836 (1996).

    Google Scholar 

  28. H. Mukhtar, R. Agarwal, and D. R. Bickers. Cutaneous metabolism of xenobiotics and steroid hormones. In H. Mukhtar (ed.), Pharmacology of the Skin, CRC Press, Boca Raton, Florida, 1991, pp. 89-109.

    Google Scholar 

  29. J. M. Baron, D. Höller, R. Schiffer, S. Frankenberg, M. Neis, H. F. Merk, and F. K. Jugert. Expression of multiple cytochrome P450 enzymes and multidrug resistance-associated transport proteins in human skin keratinocytes. J. Invest. Dermatol 116:541-548 (2001).

    Google Scholar 

  30. J. I. Ademola, E. Bloom, A. E. Maczulak, and H. I. Maibach. Skin penetration and metabolism: comparative evaluation of skin equivalent, cell culture, and human skin, J. Toxicol-Cut. Ocular Toxicol. 12:129-138 (1993).

    Google Scholar 

  31. S. J. Moloney, J. M. Fromson, and J. W. Bridges. The metabolism of 7-ethoxycoumarin and 7-hydroxycoumarin by rat and hairless mouse skin strips. Biochem. Pharmacol. 31:4005-4009 (1982).

    Google Scholar 

  32. K. A. Lamb, S. P. Denyer, F. D. Sanderson, and P. N. Shaw. The metabolism of a series of ester pro-drugs by NCTC 2544 cells, skin homogenate and LDE testskin. J. Pharm. Pharmacol. 46:965-973 (1994).

    Google Scholar 

  33. N. Higo, R. S. Hinz, D. T. W. Lau, L. Z. Benet, and R. H. Guy. Cutaneous metabolism of nitroglycerin in vitro I. Homogenized versus intact skin. Pharm. Res. 9:187-190 (1992).

    Google Scholar 

  34. A. E. M. Vickers, W. A. Biggi, R. Dannecker, and V. Fischer. Uptake and metabolism of cyclosporin A and SDZ IMM 125 in the human in vitro Skin2™ dermal and barrier function models. Life Sci. 57:215-224 (1995).

    Google Scholar 

  35. O. Rollman, E. J. Wood, M. J. Olsson, and W. J. Cunliffe. Biosynthesis of 3,4-didehydroretinol from retinol by human skin keratinocytes in culture. Biochem. J. 293:675-682 (1993).

    Google Scholar 

  36. G. J. Randolph, S. Beaulieu, M. Pope, I. Sugawara, L. Hoffman, R. M. Steinman, and W. A. Muller. A physiologic function for p-glycoprotein (MDR-1) during the migration of dendritic cells from skin via afferent lymphatic vessels. Proc. Natl. Acad. Sci. USA 95:6924-6929 (1998).

    Google Scholar 

  37. W. Pfützner, A. Terunuma, C. L. Tock, E. K. Snead, T. M. Kolodka, M. M. Gottesman, L. Taichman, and J. C. Vogel. Topical colchicines selection of keratinocytes transduced with the multidrug resistance gene (MDR1) can sustain and enhance transgene expression in vivo. Proc. Natl. Acad. Sci. USA 99:13096-13101 (2002).

    Google Scholar 

  38. B. Laupèze, L. Amiot, N. Bertho, J. M. Grosset, G. Lehne, R. Fauchet, and O. Fardel. Differential expression of the efflux pumps p-glycoprotein and multidrug resistance-associated protein in human monocyte-derived dendritic cells. Hum. Immunol 62:1073-1080 (2001).

    Google Scholar 

  39. F. Vecchini, K. Mace, J. Magdalou, Y. Mahe, B. A. Bernard, and B. Shroot. Constitutive and inducible expression of drug metabolizing enzymes in cultured human keratinocytes. Br. J. Dermatol. 132:14-21 (1995).

    Google Scholar 

  40. B. Hirel, C. Chesne, J. P. Pailheret, and A. Guillouzo. In vitro expression of drug metabolizing enzyme activities in human adult keratinocytes under various culture conditions and their response to inducers. Toxicol. In Vitro 9:49-56 (1995).

    Google Scholar 

  41. B. Lehmann, O. Tiebel, and M. Meurer. Expression of vitamin D3 25-hydroxylase (CYP27) mRNA after induction by vitamin D3 or UVB radiation in keratinocytes of human skin equivalents–a preliminary study. Arch. Dermatol. Res. 291:507-510 (1999).

    Google Scholar 

  42. B. Lehmann, T. Rudolph, J. Pietzsch, and M. Meurer. Conversion of vitamin D3 to 1α,25-dihydroxyvitamin D3 in human skin equivalents. Exp. Dermatol. 9:97-103 (2000).

    Google Scholar 

  43. B. Lehmann, T. Genehr, P. Knuschke, J. Pietzsch, and M. Meurer. UVB-induced conversion of 7-dehydrocholesterol to 1α,25-dihydroxyvitamin D3 in an in vitro human skin equivalent model. J. Invest. Dermatol. 117:1179-1185 (2001).

    Google Scholar 

  44. F.-X. Bernard, C. Barrault, and A. Deguercy. Expression of type 1 5α-reductase and metabolism of testosterone in reconstructed human epidermis (SkinEthic®): a new model for screening skin-targeted androgen modulators. Int. J. Cosmet. Sci. 22:397-407 (2000).

    Google Scholar 

  45. J. F. Zhao, Y. J. Zhang, J. Kubilus, X. H. Jin, R. M. Santella, M. Athar, Z. Y. Wang, and D. R. Bickers. Reconstituted 3-dimensional human skin as a novel in vitro model for studies of carcinogenesis. Biochem. Biophys. Res. Commun. 254:49-53 (1999).

    Google Scholar 

  46. N. Chouinard, J. P. Therrien, D. L. Mitchell, M. Robert, R. Drouin, and M. Rouabhia. Repeated exposures of human skin equivalent to low doses of ultraviolet-B radiation lead to changes in cellular functions and accumulation of cyclobutane pyrimidine dimmers. Biochem. Cell Biol. 79:507-515 (2001).

    Google Scholar 

  47. M. Robert, V. Bissonauth, G. Ross, and M. Rouabhia. Harmful effects of UVA on the structure and barrier function of engineered human cutaneous tissues. Int. J. Radiat. Biol. 75:317-326 (1999).

    Google Scholar 

  48. M. Podda, M. G. Traber, C. Weber, L. J. Yan, and L. Packer. UV-irradiation depletes antioxidants and causes oxidative damage in a model of human skin. Free Radical Biol. Med. 24:55-65 (1998).

    Google Scholar 

  49. K. Punnonen, T. Puustinen, and C. T. Jansén. The antipsoriatic drug metabolite etretin (Ro 10-1670) alters the metabolism of fatty acids in human keratinocytes in culture. Arch. Dermatol. Res. 280:103-107 (1988).

    Google Scholar 

  50. A. A. Shvedova, J. Y. Tyurina, K. Kawau, V. A. Tyurin, C. Kommineni, V. Castranova, J. P. Fabisiak, and V. E. Kagan. Selective peroxidation and externalization of phosphatidylserine in normal human epidermal keratinocytes during oxidative stress induced by cumene hydroperoxide. J. Invest. Dermatol. 118:1008-1018 (2002).

    Google Scholar 

  51. M. Rivier, I. Castiel, I. Safonova, G. Ailhaud, and S. Michel. Peroxisome proliferator-activated receptor-a enhances lipid metabolism in a skin equivalent model. J. Invest. Dermatol. 114:681-687 (2000).

    Google Scholar 

  52. M. Ponec, A. Weerheim, J. Kempenaar, A. Mulder, G. S. Gooris, J. Bouwstra, and A. M. Mommaas. The formation of competent barrier lipids in reconstructed human epidermis requires the presence of vitamin C. J. Invest. Dermatol. 109:348-355 (1997).

    Google Scholar 

  53. M. Schaller, C. Schackert, H. C. Korting, E. Januschke, and B. Hube. Invasion of Candida albicans correlates with expression of secreted aspartic proteinases during experimental infection of human epidermis. J. Invest. Dermatol. 114:712-717 (2000).

    Google Scholar 

  54. M. Schaller, R. Mailhammer, and H. C. Korting. Cytokine expression induced by Candida albicans in a model of cutaneous candidosis based on reconstituted human epidermis. J. Med. Microbiol. 51:672-676 (2002).

    Google Scholar 

  55. R. Osborne and M. A. Perkins. An approach for development of alternative test methods based on mechanisms of skin irritation. Fd Chem Toxic 32:133-142 (1994).

    Google Scholar 

  56. S. Gibbs, H. Vietsch, U. Meier, and M. Ponec. Effect of skin barrier competence on SLS and water-induced IL-1α expression. Exp. Dermatol. 11:217-223 (2002).

    Google Scholar 

  57. V. K. Sieber, W. R. Otto, and D. J. Riches. Cytotoxicity of wound dressing materials assessed using cultured skin equivalents. Burns 21:249-254 (1995).

    Google Scholar 

  58. J. P. Laugier, S. Shuster, and M. Rosdy, A. B. Csóka, R. Stern, and H. I. Maibach. Topical hyaluronidase decreases hyaluronic acid and CD44 in human skin and in reconstituted human epidermis: evidence that hyaluronidase can permeate the stratum corneum. Br. J. Dermatol. 142:226-233 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audra L. Stinchcomb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stinchcomb, A.L. Xenobiotic Bioconversion in Human Epidermis Models. Pharm Res 20, 1113–1118 (2003). https://doi.org/10.1023/A:1025024309223

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025024309223

Navigation