Skip to main content
Log in

A mathematical model of multiple ion transport across an ion-selective membrane under current load conditions

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A macrohomogeneous mathematical model of the simultaneous transport of multiple ions across an ion exchange membrane based on the Nernst–Planck equation was developed. Schlögl's equation of motion was used to evaluate the convective term of the mass-transfer inside the membrane. The model accounts for the external diffusion of the ions through the Nernst diffusion layer to the phase boundary on both sides of the membrane. Donnan equilibrium is used to describe the potential and the concentration discontinuity on the membrane-solution interface. The results document the importance of the external diffusion layers for ion transport across the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Pletcher and F. Walsh, ‘Industrial Electrochemistry’ (Chapman & Hall, London 1990).

    Google Scholar 

  2. K. Kordesch and G. Simander, ‘Fuel Cells and Their Applications’ (VCH, Weinheim 1996).

    Google Scholar 

  3. F. Helfferich, ‘Ion Exchange’ (McGraw-Hill, New York, 1962).

    Google Scholar 

  4. H.L. Yeager and A. Steck, J. Electrochem. Soc. 128 (1981) 1880.

    Google Scholar 

  5. H.L. Yeager, Z. Twardowski and L.M. Clarke, J. Electrochem. Soc. 129 (1982) 324.

    Google Scholar 

  6. A. Eisenberg and H.L. Yeager (Eds), ‘Perfluorinated Ionomer Membranes’, ACS Symp. Ser. 180 (American Chemical Society, Washington DC, 1982).

    Google Scholar 

  7. R.S. Yeo, J. Electrochem. Soc. 130 (1983) 533.

    Google Scholar 

  8. M. Mulder, ‘Basic Principles of Membrane Technology’ (Kluwer Academic, Dordrecht, The Netherlands, 1991).

    Google Scholar 

  9. S. Schlick (Ed.), ‘Ionomers Characterization Theory and Applications’ (CRC Press, New York, 1996).

    Google Scholar 

  10. J. Divisek, M. Eikerling, V. Mazin, H. Schmitz, U. Stimming and Yu.M. Volfkovich, J. Electrochem. Soc. 145 (1998) 2677.

    Google Scholar 

  11. H.-G. Haubold, Th. Vad, H. Jungbluth and P. Hiller, Electrochim. Acta 46 (2001) 1559.

    Google Scholar 

  12. M.W. Verbrugge and R.F. Hill, J. Electrochem. Soc. 137 (1990) 886.

    Google Scholar 

  13. M.W. Verbrugge and R.F. Hill, J. Electrochem. Soc. 137 (1990) 893.

    Google Scholar 

  14. M.W. Verbrugge and R.F. Hill, J. Electrochem. Soc. 137 (1990) 1131.

    Google Scholar 

  15. M. Eikerling, Yu.I. Kharkats, A.A. Kornyshev and Yu.M. Volfkovich, J. Electrochem. Soc. 145 (1998) 2684.

    Google Scholar 

  16. S.J. Paddison, R. Paul and T.A. Zawodzinski Jr, J. Electrochem. Soc. 147 (2000) 617.

    Google Scholar 

  17. T. Thampan, S. Malhotra, H. Tang and R. Datta, J. Electrochem. Soc. 147 (2000) 3242.

    Google Scholar 

  18. S. Um, C-Y. Wang and K.S. Chen, J. Electrochem. Soc. 147 (2000) 4485.

    Google Scholar 

  19. P. Millet, Electrochim. Acta 39 (1994) 2501.

    Google Scholar 

  20. l.C. Curlin, T.V. Bommaraju and C.B. Hansson, ‘Kirk-Othmer Encyclopedia of Chemical Technology’ Vol. 1 (J. Wiley & Sons, New York, 1991) p. 938.

    Google Scholar 

  21. C-P. Chen and B.V. Tilak, J. Appl. Electrochem. 26 (1996) 235.

    Google Scholar 

  22. M. Seko, A. Yomiyama and A. Ogawa, in R.E. White (Ed.), ‘Electrochemical Cell Design’ (Plenum, New York, 1984), p. 135.

    Google Scholar 

  23. G. Pillay, ‘Mathematical Modelling of Macrohomogeneous Transport Phenomena in Ion-Exchange Membranes’, PhD thesis, (New Mexico State University, 1993).

  24. Y. Ogata, T. Kojima, S. Uchiyama, M. Yasuda and H. Fine, J. Electrochem. Soc. 136 (1989) 91.

    Google Scholar 

  25. K. Kimoto, J. Electrochem. Soc. 130 (1983) 334.

    Google Scholar 

  26. R.R. Chandran, R.S. Yeo and D-T. Chin, Electrochim. Acta 30 (1985) 1585.

    Google Scholar 

  27. R. Schlögl, Ber. Bunsenges. Phys. Chem. 70 (1966) 400.

    Google Scholar 

  28. T.R. Brumleve and R.P. Buck, J. Electroanal. Chem. 90 (1978) 1.

    Google Scholar 

  29. M.W. Verbrugge and P.N. Pintauro, in: B.E. Conway, J.O'M. Bockris and R.E. White (Eds), ‘Modern Aspects of Electrochemistry’, Vol. 19 (Plenum, New York, 1989), pp. 1–67.

    Google Scholar 

  30. P.N. Pintauro, PhD thesis (University of California, Los Angeles, CA, 1980).

  31. J.A. Hogendoorn, A.J. van der Veen, J.H.G. van der Stegen, J.A.M. Kuipers and G.F. Versteeg, Comput. Chem. Eng. 25 (2001) 1251.

    Google Scholar 

  32. N. Lakshminarayanaiah, ‘Transport Phenomena in Membranes’ (Academic, New York, 1969).

    Google Scholar 

  33. V. Sasidhar and E. Ruckenstein, J. Coll. Interface Sci. 85 (1982) 332.

    Google Scholar 

  34. E.H. Cwirko and R.G. Carbonell, J. Coll. Interface Sci. 129 (1989) 513.

    Google Scholar 

  35. E.H. Cwirko and R.G. Carbonell, J. Membr. Sci. 48 (1990) 155.

    Google Scholar 

  36. E.H. Cwirko and R.G. Carbonell, J. Membr. Sci. 67 (1992) 211.

    Google Scholar 

  37. E.H. Cwirko and R.G. Carbonell, J. Membr. Sci. 67 (1992) 227.

    Google Scholar 

  38. R.T. Leah, N.P. Brandon, V. Vesovic and G.H. Kelsall, J. Electrochem. Soc. 147 (2000) 4173.

    Google Scholar 

  39. M.W. Verbrugge and R.F. Hill, Electrochim. Acta 37 (1992) 221.

    Google Scholar 

  40. I. Roušar, J. Hostomský, V. Cezner and B. Štverák, J. Electrochem. Soc. 118 (1971) 881.

    Google Scholar 

  41. P.N. Brown, A.C. Hindmarsh and L.R. Petzold, ‘Consistent Initial Condition Calculation for Differential-Algebraic Systems’ LLNL Report UCRL-JC-122175 (Aug. 1995).

  42. IMSL Numerical Library (1994).

  43. D.R. Lide (Ed.), ‘CRC Handbook of Chemistry and Physics’, 78th edn (CRC, New York, 1997).

    Google Scholar 

  44. M.J. Schmidt, A.A. Wragg, L.J. Janssen and K. Bouzek, Mass transfer and reaction distribution in a gas evolving narrow-gap electrolysis cell with lantern blade electrodes, 2nd European Congress of Chemical Engineering, Montpellier, France (Oct. 1999).

  45. H.L. Yeager, B. Kipling and R.L. Dotson, J. Electrochem. Soc. 127 (1980) 303.

    Google Scholar 

  46. A. Herrera and H.L. Yeager, J. Electrochem. Soc. 134 (1987) 2446.

    Google Scholar 

  47. T.A. Zawodzinski, M. Neeman, L.O. Sillerud and S. Gottesfeld, J. Phys. Chem. 95 (1991) 6040.

    Google Scholar 

  48. A. Narebska, W. Kujawski and S. Koter, J. Membr. Sci. 30 (1987) 125.

    Google Scholar 

  49. T. Xue, R.B. Longwell and K. Osseo-Asare, J. Membr. Sci. 58 (1991) 175.

    Google Scholar 

  50. A.J. Easteal and L.A. Woolf, J. Phys. Chem. 90 (1986) 2441.

    Google Scholar 

  51. R. Bork-Brücken and K.H. Simmrock, Chem. Ing. Tech. 58 (1986) 407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Bouzek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fíla, V., Bouzek, K. A mathematical model of multiple ion transport across an ion-selective membrane under current load conditions. Journal of Applied Electrochemistry 33, 675–684 (2003). https://doi.org/10.1023/A:1025018726112

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025018726112

Navigation