Skip to main content
Log in

Convergence of Double Fourier Series after a Change of Variable

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

In this paper, we prove that for any compact set \(\Omega \subset C({\mathbb{T}}^2 )\) there exists a homeomorphism τ of the closed interval \({\mathbb{T}} = [ - \pi ,\pi ]\) such that for an arbitrary function f ∈ Ω the Fourier series of the function F(x,y) = f(τ(x),τ(y)) converges uniformly on \(C({\mathbb{T}}^2)\) simultaneously over rectangles, over spheres, and over triangles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. K. Bari, Trigonometric Series [in Russian], Fizmatgiz, Moscow, 1961.

    Google Scholar 

  2. J.-P. Kahane and Y. Katznelson, “Séries de Fourier des fonctions bornées,” in: Stud. Pure Math. à la Mémoire de P. Turan, Acad. Kiado, Budapest, 1983, pp. 395–410.

    Google Scholar 

  3. A. A. Saakyan, “On the properties of the Fourier coefficients of the superposition of functions,” Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.], 248 (1979), no. 2, 302–306.

    Google Scholar 

  4. A. A. Saakyan, “On Bohr's theorem for multiple Fourier series,” Mat. Zametki [Math. Notes], 64 (1998), no. 6, 913–924.

    Google Scholar 

  5. F. G. Arutyunyan, “Representation of functions by multiple series,” Dokl. Akad. Nauk Armyan. SSR, 64 (1977), no. 2, 72–76.

    Google Scholar 

  6. M. I. D'yachenko, “Two-dimensional Waterman classes and the u-convergence of Fourier series,” Mat. Sb. [Russian Acad. Sci. Sb. Math.], 190 (1999), no. 7, 955–972.

    Google Scholar 

  7. B. I. Golubov, “Double Fourier series and functions of bounded variation,” Izv. Vyssh. Uchebn. Zaved. Mat. [Soviet Math. (Iz. VUZ)], (1972), no. 12(127), 55–68.

    Google Scholar 

  8. A. A. Saakyan, “On the convergence of double Fourier series of functions of bounded harmonic variation,” Izv. Akad. Nauk Armyan. SSR, 21 (1986), no. 6, 517–529.

    Google Scholar 

  9. M. I. Dyachenko, “Waterman classes and spherical partial sums of double Fourier series,” Analysis Math., 21 (1995), no. 1, 3–21.

    Google Scholar 

  10. A. N. Bakhvalov, “The Waterman classes and the triangular partial sums of double Fourier series,” Analysis Math., 27 (2001), no. 1, 3–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saakyan, A.A. Convergence of Double Fourier Series after a Change of Variable. Mathematical Notes 74, 255–265 (2003). https://doi.org/10.1023/A:1025012409864

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025012409864

Navigation