Skip to main content
Log in

Interaction of Differently Designed Immunoliposomes with Colon Cancer Cells and Kupffer Cells. An in Vitro Comparison

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Evaluate the effectiveness of distal-end coupling of a tumor-specific antibody to liposomal polyethylene glycol (PEG) chains to improve target binding and reduce interference by macrophage uptake.

Methods. Monoclonal antibody CC52, specific for CC531 rat colon carcinoma, was coupled to the bilayer of PEG-liposomes (type I) or to the distal end of bilayer-anchored PEG-chains (type II). Uptake of both (radiolabeled)liposome types by CC531 cells and rat liver macrophages was determined.

Results. With increasing antibody density, both immunoliposome types showed increased binding to target cells, but type II liposomes displayed better target recognition than type I. Uptake by macrophages increased with antibody density for both liposome types. Lowest uptake by macrophages was found for type II liposomes at low antibody densities. Unexpectedly, not only for type I but also for type II liposomes, in which the antibody is coupled via its Fc moiety, uptake by macrophages was inhibited by aggregated IgG, indicating involvement of Fc receptors. Also polyinosinic acid, an inhibitor of scavenger receptors, reduced uptake of type II liposomes.

Conclusion. Although distal end coupling of antibodies to bilayer-anchored PEG chains in liposomes through the Fc moiety enhances target cell binding, it does not prevent the recognition by Fc receptors on macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. M. Allen, C. Hansen, F. Martin, C. Redemann, and A. Yau Young. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim. Biophys. Acta 1066:29-36 (1991).

    Google Scholar 

  2. K. Maruyama, N. Takahashi, T. Tagawa, K. Nagaike, and M. Iwatsuru. Immunoliposomes bearing polyethyleneglycol-coupled Fab’ fragment show prolonged circulation time and high extravasation into targeted solid tumors in vivo. FEBS Lett. 413:177-180 (1997).

    Google Scholar 

  3. D. Goren, A. T. Horowitz, S. Zalipsky, M. C. Woodle, Y. Yarden, and A. Gabizon. Targeting of stealth liposomes to erbB-2 (Her/2) receptor: in vitro and in vivo studies. Br. J. Cancer 74:1749-1756 (1996).

    Google Scholar 

  4. D. B. Kirpotin, J. W. Park, K. Hong, Y. Shao, R. Shalaby, G. Colbern, C. C. Benz, and D. Papahadjopoulos. Targeting of liposomes to solid tumors: The case of sterically stabilized anti-HER2 immunoliposomes. J. Liposome Research 7:391-417 (1997).

    Google Scholar 

  5. G. A. Koning, H. W. M. Morselt, A. Gorter, T. M. Allen, S. Zalipsky, J. A. A. M. Kamps, and G. L. Scherphof. Pharmacokinetics of differently designed immunoliposome formulations in rats with or without hepatic colon cancer metastases. Pharm. Res. 18:1291-1298 (2001).

    Google Scholar 

  6. J. A. A. M. Kamps, G. A. Koning, M. J. Velinova, H. W. M. Morselt, M. Wilkens, A. Gorter, J. Donga, and G. L. Scherphof. Uptake of long-circulating immunoliposomes, directed against colon adenocarcinoma cells, by liver metastases of colon cancer. J. Drug Target. 8:235-245 (2000).

    Google Scholar 

  7. J. A. Harding, C. M. Engbers, M. S. Newman, N. I. Goldstein, and S. Zalipsky. Immunogenicity and pharmacokinetic attributes of poly(ethylene glycol)-grafted immunoliposomes. Biochim. Biophys. Acta 1327:181-192 (1997).

    Google Scholar 

  8. T. M. Allen, E. Brandeis, C. B. Hansen, G. Y. Kao, and S. Zalipsky. A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in efficient targeting to cancer cells. Biochim. Biophys. Acta 1237:99-108 (1995).

    Google Scholar 

  9. K. Maruyama, T. Takizawa, T. Yuda, S. J. Kennel, L. Huang, and M. Iwatsuru. Targetability of novel immunoliposomes modified with amphipathic poly(ethylene glycol)s conjugated at their distal terminals to monoclonal antibodies. Biochim. Biophys. Acta 1234:74-80 (1995).

    Google Scholar 

  10. A. Mori, S. J. Kennel, M. van Borssum Waalkes, G. L. Scherphof, and L. Huang. Characterization of organ-specific immunoliposomes for delivery of 3′,5′-O-dipalmitoyl-5-fluoro-2′-deoxyuridine in a mouse lung-metastasis model. Cancer Chemother. Pharmacol. 35:447-456 (1995).

    Google Scholar 

  11. S. Zalipsky, C. B. Hansen, D. E. Lopes de Menezes, and T. M. Allen. Long-circulating, polyethylene glycol-grafted immunoliposomes. J. Cotrol. Release 39:153-161 (1996).

    Google Scholar 

  12. S. Zalipsky. Synthesis of an end-group functionalized polyethylene glycol-lipid conjugate for preparation of polymer-grafted liposomes. Bioconjug. Chem. 4:296-299 (1993).

    Google Scholar 

  13. G. D. Beun, D. H. van Eendenburg, W. E. Corver, C. J. van de Velde, and G. J. Fleuren. T-cell retargeting using bispecific monoclonal antibodies in a rat colon carcinoma model. I. Significant bispecific lysis of syngeneic colon carcinoma CC531 is critically dependent on prolonged preactivation of effector T-lymphocytes by immobilized anti-T-cell receptor antibody. J. Immunother. 11:238-248 (1992).

    Google Scholar 

  14. C. J. F. BÖttcher, C. M. van Gent, and C. Pries. A rapid and sensitive sub-micro phosphorus determination. Anal. Chim. Acta 24:203-204 (1961).

    Google Scholar 

  15. J. T. P. Derksen and G. L. Scherphof. An improved method for the covalent coupling of proteins to liposomes. Biochim. Biophys. Acta 814:151-155 (1985).

    Google Scholar 

  16. C. B. Hansen, G. Y. Kao, E. H. Moase, S. Zalipsky, and T. M. Allen. Attachment of antibodies to sterically stabilized liposomes: evaluation, comparison and optimization of coupling procedures. Biochim. Biophys. Acta 1239:133-144 (1995).

    Google Scholar 

  17. G. L. Petterson. A simplification of the protein assay method of lowry et al. which is more generally applicable. Anal. Biochem. 83:346-356 (1977).

    Google Scholar 

  18. R. L. Marquet and D. L. Westbroek. and J. Jeekel. Interferon treatment of a transplantable rat colon adenocarcinoma: importance of tumor site. Int. J. Cancer 33:689-692 (1984).

    Google Scholar 

  19. J. T. P. Derksen, H. W. M. Morselt, D. Kalicharan, C. E. Hulstaert, and G. L. Scherphof. Interaction of immunoglobulin-coupled liposomes with rat liver macrophages in vitro. Exp. Cell Res. 168:105-115 (1987).

    Google Scholar 

  20. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265-275 (1951).

    Google Scholar 

  21. J. A. A. M. Kamps, H. W. M. Morselt, P. J. Swart, D. K. F. Meijer, and G. L. Scherphof. Massive targeting of liposomes, surface-modified with anionized albumins, to hepatic endothelial cells. Proc. Natl. Acad. Sci. USA 94:11681-11685 (1997).

    Google Scholar 

  22. M. Krieger and J. Herz. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu. Rev. Biochem. 63:601-637 (1994).

    Google Scholar 

  23. A. L. Klibanov, K. Maruyama, A. M. Beckerleg, V. P. Torchilin, and L. Huang. Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target. Biochim. Biophys. Acta 1062:142-148 (1991).

    Google Scholar 

  24. G. A. Koning, H. W. M. Morselt, M. J. Velinova, J. Donga, A. Gorter, T. M. Allen, S. Zalipsky, J. A. A. M. Kamps, and G. L. Scherphof. Selective transfer of a lipophilic prodrug of 5-fluorodeoxyuridine (FUdR) from immunoliposomes to colon cancer cells. Biochim. Biophys. Acta 1420:153-167 (1999).

    Google Scholar 

  25. A. Chonn and P. R. Cullis. Ganglioside GM1 and hydrophilic polymers increase liposome circulation times by inhibiting the association of blood proteins. J. Liposome Res. 2:397-410 (1992).

    Google Scholar 

  26. D. C. Litzinger, A. M. Buiting, N. van Rooijen, and L. Huang. Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochim. Biophys. Acta 1190:99-107 (1994).

    Google Scholar 

  27. J. Dijkstra, W. J. M. van Galen, and G. L. Scherphof. Influence of liposome charge on the association of liposomes with Kupffer cells in vitro. Effects of divalent cations and competition with latex particles. Biochim. Biophys. Acta 813:287-297 (1985).

    Google Scholar 

  28. D. E. Lopes de Menezes, L. M. Pilarski, and T. M. Allen. In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma. Cancer Res. 58:3320-3330 (1998).

    Google Scholar 

  29. J. W. Park, K. Hong, P. Carter, H. Asgari, L. Y. Guo, G. A. Keller, C. Wirth, R. Shalaby, C. Kotts, W. I. Wood, D. Papahadjopoulos, and C. C. Benz. Development of anti-p185HER2 immunoliposomes for cancer therapy. Proc. Natl. Acad. Sci. USA 92:1327-1331 (1995).

    Google Scholar 

  30. J. W. Park, K. Hong, D. B. Kirpotin, D. Papahadjopoulos, and C. C. Benz. Immunoliposomes for cancer treatment. In J.T. August (ed.), Gene Therapy, Academic Press Inc, San Diego, California, 1997, pp. 399-435.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan A. A. M. Kamps.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koning, G.A., Morselt, H.W.M., Gorter, A. et al. Interaction of Differently Designed Immunoliposomes with Colon Cancer Cells and Kupffer Cells. An in Vitro Comparison. Pharm Res 20, 1249–1257 (2003). https://doi.org/10.1023/A:1025009300562

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025009300562

Navigation