Skip to main content
Log in

Partially Classical States of a Boson Field

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Employing positive-definiteness arguments we analyse Boson field states, which combine classical and quantum mechanical features (signal and noise), in a constructive manner. Mathematically, they constitute Bauer simplexes within the convex, weak-*-compact state space of the C*-Weyl algebra, defined by a presymplectic test function space (smooth one-Boson wave functions) and are affinely homeomorphic to a state space of a classical field. The regular elements are expressed in terms of weak distributions (probability premeasures) on the dual test function space. The Bauer simplex arising from the bare vacuum is shown to generalize the quantum optical photon field states with positive P-functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfsen, E. M.: Compact Convex Sets and Boundary Integrals, Springer-Verlag, Berlin, 1971.

    Google Scholar 

  2. Binz, E., Honegger, R. and Rieckers, A.: Construction and uniqueness of the C*-Weyl algebra over a general pre-symplectic form, Preprint Mannheim, Tübingen, 2003.

  3. Binz, E., Honegger, R. and Rieckers, A.: Field-theoretic Weyl quantization of large Poisson algebras, Preprint Mannheim, Tübingen, 2003.

  4. Binz, E., Honegger, R. and Rieckers, A.: Field-theoretic Weyl quantization as a strict and continuous deformation quantization, Preprint Mannheim, Tübingen, 2003.

  5. Bratteli, O. and Robinson, D. W.: Operator Algebras and Quantum Statistical Mechanics I, Springer-Verlag, New York, 1987.

    Google Scholar 

  6. Bratteli, O. and Robinson, D. W.: Operator Algebras and Quantum Statistical Mechanics II, Springer-Verlag, New York, 1981.

    Google Scholar 

  7. Evans, D. E. and Lewis, J. T.: Dilations of Irreversible Evolutions in Algebraic Quantum Theory. Comm. Dublin Inst. Adv. Stud. Ser. A (Theoret. Phys.) 24, Dublin Institute for Advanced Studies, Dublin, 1977.

    Google Scholar 

  8. Gelfand, I. M. and Vilenkin, N. Ya.: Generalised Functions IV, Academic Press, New York, 1964.

    Google Scholar 

  9. Glauber, R. J.: The quantum theory of optical coherence, Phys. Rev. 130 (1963), 2529–2539.

    Google Scholar 

  10. Glauber, R. J.: Coherent and incoherent states of the radiation field, Phys. Rev. 131 (1963), 2766–2788.

    Google Scholar 

  11. Glauber, R. J.: Optical coherence and photon statistics, In: C. de Witt, A. Blandin and C. Cohen-Tannoudji (eds), Quantum Optics and Electronics, Gordon and Breach, New York, 1995, 1964.

    Google Scholar 

  12. Hewitt, E. and Ross, K. A.: Abstract Harmonic Analysis I, II, Springer-Verlag, New York, 1963, 1970.

    Google Scholar 

  13. Hida, T.: Brownian Motion, Springer-Verlag, New York, 1980.

    Google Scholar 

  14. Hillery, M.: Classical pure states are coherent states, Phys. Lett. A 111 (1985), 409–411.

    Google Scholar 

  15. Honegger, R. and Rieckers, A.: The general form of non-Fock coherent boson states, Publ. RIMS Kyoto Univ. 26 (1990), 397–417.

    Google Scholar 

  16. Honegger, R. and Rieckers, A.: Squeezed variances of smeared Boson fields, Helv. Phys. Acta 70 (1997), 507–541.

    Google Scholar 

  17. Honegger, R. and Rieckers, A.: Squeezing of optical states on the CCR-algebra, Publ. RIMS Kyoto Univ. 33 (1997), 869–892.

    Google Scholar 

  18. Honegger, R. and Rieckers, A.: Construction of classical and non-classical coherent photon states, Ann. Phys. 289 (2001), 213–231.

    Google Scholar 

  19. Honegger, R. and Rieckers, A.: Some continuous field quantizations, equivalent to the C*-Weyl quantization, Preprint Mannheim, Tübingen, 2003.

  20. Honegger, R. and Rieckers, A.: State quantizations associated with the field-theoretic C*-Weyl algebra, Preprint Mannheim, Tübingen, 2003.

  21. Kadison, R. V. and Ringrose, J. R.: Fundamentals of the Theory of Operator Algebras I,II, Academic Press, New York, 1983, 1986.

    Google Scholar 

  22. Kastler, D.: The C-algebras of a free Boson field, Comm. Math. Phys. 1 (1965), 14–48.

    Google Scholar 

  23. Klauder, J. R. and Sudarshan, E. C. G.: Fundamentals of Quantum Optics, Benjamin, New York, 1968.

    Google Scholar 

  24. Landsman, N. P.: Mathematical Topics Between Classical and Quantum Mechanics, Springer-Verlag, New York, 1998.

    Google Scholar 

  25. Loudon, R.: The Quantum Theory of Light, Clarendon Press, Oxford, 1979.

    Google Scholar 

  26. Loudon. R. and Knight, P. L.: Squeezed light, J. Modern Option 34 (1987), 709–759.

    Google Scholar 

  27. Ma, X. and Rhodes, W.: Multimode squeeze operators and squeezed states, Phys. Rev. A 41 (1990), 4625–4631.

    Google Scholar 

  28. Manuceau, J., Sirugue, M., Testard, D. and Verbeure, A.: The smallest C*-algebra for canonical commutation relations. Comm. Math. Phys. 32 (1973), 231–243.

    Google Scholar 

  29. Meystre, P. and Sargent, M. III: Elements of Quantum Optics, Springer-Verlag, New York, 1990.

    Google Scholar 

  30. Nussenzveig, H. M.: Introduction to Quantum Optics, Gordon and Breach, London, 1973.

    Google Scholar 

  31. Petz, D.: An Invitation to the Algebra of Canonical Commutation Relations, Leuven Notes in Math. Theoret. Phys. Vol. 2, Leuven Univ. Press, Leuven, Belgium, 1990.

    Google Scholar 

  32. Richter, H.: Wahrscheinlichkeitstheorie, 2nd edn, Springer-Verlag, Berlin, 1966.

    Google Scholar 

  33. Rieffel, M. A.: Quantization and C*-algebras, In: R. S. Doran (eds), C*-Algebras: 1943–1993, Contemp. Math. 167, Amer. Math. Soc., Providence, RI, 1994, pp. 67–97.

    Google Scholar 

  34. Robinson, P. L.: Symplectic pathology, Quart. J. Math. Oxford 44 (1993), 101–107.

    Google Scholar 

  35. Skorokhod, A. V.: Integration in Hilbert Space, Springer-Verlag, New York, 1974.

    Google Scholar 

  36. Slawny, J.: On factor representations and the C*-algebra of the canonical commutation relations, Comm. Math. Phys. 24 (1971), 151–170.

    Google Scholar 

  37. Takesaki, M.: Theory of Operator Algebras I, Springer-Verlag, New York, 1979.

    Google Scholar 

  38. Titulaer, U. M. and Glauber, R. J.: Correlation functions and coherent fields, Phys. Rev. B 140 (1965), 676–682.

    Google Scholar 

  39. Umemura, Y.: Measures on infinite dimensional vector spaces, Publ. RIMS Kyoto Univ. A 1 (1965), 1–47.

    Google Scholar 

  40. Vogel, W., Welsch, D.-G. and Wallentowitz, S.: Quantum Optics, an Introduction, Wiley-VCH, Berlin, 2001.

    Google Scholar 

  41. Walls, D. F. and Milburn, G. J.: Quantum Optics, Springer-Verlag, New York, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honegger, R., Rieckers, A. Partially Classical States of a Boson Field. Letters in Mathematical Physics 64, 31–44 (2003). https://doi.org/10.1023/A:1024972815695

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024972815695

Navigation