Skip to main content
Log in

Amino acid sequences and solution structures of manganese stabilizing protein that affect reconstitution of Photosystem II activity

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

This minireview presents a summary of information available on the secondary and tertiary structure of manganese stabilizing protein (MSP) in solution, and on the identity of amino acid residues that affect binding and functional assembly of this protein into Photosystem II. New data on the secondary structure of C-terminal mutants and 90 °C-heated manganese stabilizing protein, along with earlier data on the secondary structure of N-terminal mutants and the tertiary structure of all modified MSP species, allow for an evaluation of models for spinach MSP secondary and tertiary structure. This summary of previous and new information better documents the natively unfolded behavior of the protein in solution. A two-step mechanism for binding of manganese stabilizing protein to Photosystem II is discussed and possible solution three-dimensional conformations of the wild-type protein and some of its unfolded mutants, are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed A, Tajmirriahi HA and Carpentier R (1995) A quantitative secondary structure analysis of the 33-kDa extrinsic polypeptide of Photosystem II by FTIR spectroscopy. FEBS Lett 363: 65–68

    Article  PubMed  CAS  Google Scholar 

  • Anati R and Adir N (2000) Crystalization of dimers of the manganese-stabilizing protein of Photosystem II. Photosynth Res 64: 167–177

    Article  PubMed  CAS  Google Scholar 

  • Betts SD, Hachigian TM, Pichersky E and Yocum CF (1994) Reconstitution of the spinach oxygen-evolving complex with recombinant Arabidopsis manganese-stabilizing protein. PlantMol Biol 26: 117–130

    Article  CAS  Google Scholar 

  • Betts SD, Ross JR, Hall KU, Pichersky E and Yocum CF (1996a) Functional reconstitution of Photosystem II with recombinant manganese-stabilizing proteins containing mutations that remove the disulfide bridge. Biochim Biophys Acta 1274: 135–142

    Article  PubMed  Google Scholar 

  • Betts SD, Ross JR, Pichersky E and Yocum CF (1996b) Coldsensitive assembly of a mutant manganese-stabilizing protein caused by a Val to Ala replacement. Biochemistry 35: 6302–6307

    Article  PubMed  CAS  Google Scholar 

  • Betts SD, Ross JR, Pichersky E and Yocum CF (1997) Mutation Val235Ala weakens binding of the 33-kDa manganese stabilizing protein of Photosystem II to one of two sites. Biochemistry 36: 4047–4053

    Article  PubMed  CAS  Google Scholar 

  • Betts SD, Lydakis-Simantiris N, Ross JR and Yocum CF (1998) The carboxyl-terminal tripeptide of the manganese-stabilizing protein is required for quantitative assembly into Photosystem II and for high rates of oxygen evolution activity. Biochemistry 37: 14230–14236

    Article  PubMed  CAS  Google Scholar 

  • Bricker TMand Frankel LK (1998) The structure and function of the 33 kDa extrinsic protein of Photosystem II: a critical assessment. Photosynth Res 56: 157–173

    Article  CAS  Google Scholar 

  • Bricker TM, Odom WR and Queirolo CB (1988) Close association of the 33-kDa extrinsic protein with the apoprotein of cpa1 in photosystem II. FEBS Lett 231: 111–117

    Article  CAS  Google Scholar 

  • Burnap RL and Sherman LA (1991) Deletion mutagenesis in Synechocystis Sp PCC6803 indicates that the Mn-stabilizing protein of Photosystem II is not essential for O2 evolution. Biochemistry 30: 440–446

    Article  PubMed  CAS  Google Scholar 

  • Burnap RL, Qian M, Shen JR, Inoue Y and Sherman LA (1994) Role of disulfide linkage and putative intermolecular binding residues in the stability and binding of the extrinsic manganese stabilizing protein to the Photosystem II reaction center. Biochemistry 33: 13712–13718

    Article  PubMed  CAS  Google Scholar 

  • Debus RJ (1992) Themanganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta 1102: 269–352

    Article  PubMed  CAS  Google Scholar 

  • Debus RJ (2000) The polypeptides of Photosystem II and their influence on manganotryosyl-based oxygen evolution. In: Sigel A and Sigel H (eds) Manganese and its Role in Biological Processes, Vol 37, pp 657–711. Marcel Dekker, New York

    Google Scholar 

  • Debus RJ (2001) Amino acid residues that modulate the properties of tyrosine Y(Z) and the manganese cluster in the water oxidizing complex of Photosystem II. Biochim Biophys Acta 1503: 164–186

    Article  PubMed  CAS  Google Scholar 

  • de las Rivas J and Heredia P (1999) Structural predictions on the 33 kDa extrinsic protein associated to the oxygen evolving complex of photosynthetic organisms. Photosynth Res 61: 11–21

    Article  CAS  Google Scholar 

  • Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CR, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang CH, Kissinger CR, Bailey RW, Griswold MD, Chiu M, Garner EC and Obradovic Z (2001) Intrinsically disordered protein. J Mol Graph 19: 26–59

    Article  CAS  Google Scholar 

  • Eaton-Rye JJ and Murata N (1989) Evidence that the aminoterminus of the 33-kDa extrinsic protein is required for binding to the Photosystem II complex. Biochim Biophys Acta 977: 219–226

    PubMed  CAS  Google Scholar 

  • Enami I, Satoh K and Katoh S (1987) Crosslinking between the 33 kDa extrinsic protein and the 47 kDa chlorophyll-carrying protein of the PS II reaction center core complex. FEBS Lett 226: 161–165

    Article  CAS  Google Scholar 

  • Enami I, Kamo M, Ohta H, Takahashi S, Miura T, Kusayanagi M, Tanabe S, Kamei A, Motoki A, Hirano M, Tomo T and Satoh K (1998) Intramolecular cross-linking of the extrinsic 33-kDa protein leads to loss of oxygen evolution but not its ability of binding to Photosystem II and stabilization of the manganese cluster. J Biol Chem 273: 4629–4634

    Article  PubMed  CAS  Google Scholar 

  • Frankel LK, Cruz JA and Bricker TM (1999) Carboxylate groups on the manganese-stabilizing protein are required for its efficient binding to Photosystem II. Biochemistry 38: 14271–14278

    Article  PubMed  CAS  Google Scholar 

  • Ghanotakis DF and Yocum CF (1990) Photosystem II and the oxygen-evolving complex. Annu Rev Plant Physiol Plant Mol Biol 41: 255–276

    Article  CAS  Google Scholar 

  • Hashimoto A, Ettinger WF, Yamamoto Y and Theg SM (1997) Assembly of newly imported oxygen-evolving complex subunits in isolated chloroplasts: sites of assembly and mechanism of binding. Plant Cell 9: 441–452

    Article  PubMed  CAS  Google Scholar 

  • Hutchison RS, Betts SD, Yocum CF and Barry BA (1998) Conformational changes in the extrinsic manganese stabilizing protein can occur upon binding to the Photosystem II reaction center: an isotope editing and FT-IR study. Biochemistry 37: 5643–5653

    Article  PubMed  CAS  Google Scholar 

  • Kamiya N and Shen J-R (2003) Crystal structure of oxygenevolving Photosystem II from Thermosynechococcus vulcanus at 3.7 Å resolution. Proc Natl Acad Sci USA 100: 98–103

    Google Scholar 

  • Keegstra K, Olsen LJ and Theg SM (1989) Chloroplastic precursors and their transport across the envelope membranes. Annu Rev Plant Physiol Plant Mol Biol 40: 471–501

    Article  CAS  Google Scholar 

  • Kuwabara T and Murata N (1979) Purification and characterization of 33 kilodalton protein of spinach chloroplasts. Biochim Biophys Acta 581: 228–236

    PubMed  CAS  Google Scholar 

  • Kuwabara T and Murata N (1982) Inactivation of photosynthetic oxygen evolution and concomitant release of 3 polypeptides in the Photosystem II particles of spinach chloroplasts. Plant Cell Physiol 23: 533–539

    CAS  Google Scholar 

  • Kuwabara T and Murata N (1983) Quantitative analysis of the inactivation of photosynthetic oxygen evolution and the release of polypeptides and manganese in the Photosystem II particles of spinach chloroplasts. Plant Cell Physiol 24: 741–747

    CAS  Google Scholar 

  • Leuschner C and Bricker TM (1996) Interaction of the 33 kDa protein with Photosystem II: rebinding of the 33 kDa extrinsic protein to Photosystem II membranes which contain four, two, or zero manganese per Photosystem II reaction center. Biochemistry 35: 4551–4557

    Article  PubMed  CAS  Google Scholar 

  • Lydakis-Simantiris N, Betts SD and Yocum CF (1999a) Leucine 245 is a critical residue for folding and function of the manganese stabilizing protein of Photosystem II. Biochemistry 38: 15528–15535

    Article  PubMed  CAS  Google Scholar 

  • Lydakis-Simantiris N, Hutchison RS, Betts SD, Barry BA and Yocum CF (1999b) Manganese stabilizing protein of Photosystem II is a thermostable, natively unfolded polypeptide. Biochemistry 38: 404–414

    Article  PubMed  CAS  Google Scholar 

  • Mayfield SP, Bennoun P and Rochaix JD (1987) Expression of the nuclear encoded oee1 protein is required for oxygen evolution and stability of Photosystem II particles in Chlamydomonas reinhardtii. EMBO J 6: 313–318

    PubMed  CAS  Google Scholar 

  • Miura T, Shen JR, Takahashi S, Kamo M, Nakamura E, Ohta H, Kamei A, Inoue Y, Domae N, Takio R, Nakazato K and Enami I (1997) Identification of domains on the extrinsic 33-kDa protein possibly involved in electrostatic interaction with Photosystem II complex by means of chemical modification. J Biol Chem 272: 3788–3798

    Article  PubMed  CAS  Google Scholar 

  • Miyao M and Murata N (1984) Role of the 33-kDa polypeptide in preserving Mn in the photosynthetic oxygen-evolution system and its replacement by chloride-ions. FEBS Lett 170: 350–354

    Article  CAS  Google Scholar 

  • Miyao M and Murata N (1989) The mode of binding of 3 extrinsic proteins of 33-kDa, 23-kDa and 18-kDa in the Photosystem II complex of spinach. Biochim Biophys Acta 977: 315–321

    CAS  Google Scholar 

  • Motoki A, Usui M, Shimazu T, Hirano M and Katoh S (2002) A domain of the manganese-stabilizing protein from Synechococcus elongatus involved in functional binding to Photosystem II. J Biol Chem 277: 14747–14756

    Article  PubMed  CAS  Google Scholar 

  • Odom WR and Bricker TM (1992) Interaction of cpa-1 with the manganese-stabilizing protein of Photosystem II-identification of domains cross-linked by 1-ethyl-3-[3-(dimethylamino) propyl]carbo diimide. Biochemistry 31: 5616–5620

    Article  PubMed  CAS  Google Scholar 

  • Pazos F, Heredia P, Valencia A and de las Rivas J (2001) Threading structural model of the manganese-stabilizing protein PsbO reveals presence of two possible beta-sandwich domains. Proteins 45: 372–381

    Article  PubMed  CAS  Google Scholar 

  • Popelkova H, Im Mm, D'Auria J, Betts SD, Lydakis-Simantiris N and Yocum CF (2002a) N-terminus of the Photosystem II manganese stabilizing protein: effects of sequence elongation and truncation. Biochemistry 41: 2702–2711

    Article  PubMed  CAS  Google Scholar 

  • Popelkova H, Im Mm and Yocum CF (2002b) N-terminal truncations of manganese stabilizing protein identify two amino acid sequences required for binding of the eukaryotic protein to Photosystem II and reveal the absence of one binding-related sequence in cyanobacteria. Biochemistry 41: 10038–10045

    Article  PubMed  CAS  Google Scholar 

  • Ruan K, Li J, Liang R, Xu Ch, Yu Y, Lange R and Balny C (2002) A rare fluorescence behavior where the emission is dominated by tyrosine: case of the 33 kDa protein from spinach Photosystem II. Biochem Biophys Res Commun 293: 593–597

    Article  PubMed  CAS  Google Scholar 

  • Schmid FX (1997) Optical spectroscopy to characterize protein conformation and conformational changes. In: Creighton TE (ed) Protein Structure: a Practical Approach, pp 261–297. IRL Press, New York

    Google Scholar 

  • Seidler A (1994) Introduction of a histidine tail at the N-terminus of a secretory protein expressed in Escherichia coli. Protein Eng 7: 1277–1280

    PubMed  CAS  Google Scholar 

  • Seidler A (1996a) Intermolecular and intramolecular interactions of the 33-kDa protein in Photosystem II. Eur J Biochem 242: 485–490

    Article  PubMed  CAS  Google Scholar 

  • Seidler A (1996b) The extrinsic polypeptides of Photosystem II. Biochim Biophys Acta 1277: 35–60

    Article  PubMed  Google Scholar 

  • Seidler A and Michel H (1990) Expression in Escherichia coli of the psbO gene encoding the 33 kDa protein of the oxygen-evolving complex from spinach. EMBO J 9: 1743–1748

    PubMed  CAS  Google Scholar 

  • Seidler A, Roll K and Michel H (1992) Characterization of the 33 kD protein of the oxygen evolving complex of higher plants by site-directed mutagenesis. In: Murata N (ed) Research in Photosynthesis, Vol II, pp 409–412. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Shen JR, Qian M, Inoue Y and Burnap RL (1998) Functional characterization of Synechocystis sp. PCC 6803 Delta psbU and Delta psbV mutants reveals important roles of cytochrome c-550 in cyanobacterial oxygen evolution. Biochemistry 37: 1551–1558

    Article  PubMed  CAS  Google Scholar 

  • Shutova T, Irrgang KD, Shubin V, Klimov VV and Renger G (1997) Analysis of pH-induced structural changes of the isolated extrinsic 33 kilodalton protein of Photosystem II. Biochemistry 36: 6350–6358

    Article  PubMed  CAS  Google Scholar 

  • Shutova T, Irrgang KD, Klimov VV and Renger G (2000) Is the manganese stabilizing 33 kDa protein of Photosystem II attaining a 'natively unfolded' or 'molten globule' structure in solution? FEBS Lett 467: 137–140

    Article  PubMed  CAS  Google Scholar 

  • Shutova T, Deikus G, Irrgang KD, Klimov VV and Renger G (2001) Origin and properties of fluorescence emission from the extrinsic 33 kDa manganese stabilizing protein of higher plant water oxidizing complex. Biochim Biophys Acta 1504: 371–378

    Article  PubMed  CAS  Google Scholar 

  • Sonoyama M, Motoki A, Okamoto G, Hirano M, Ishid a H and Katoh S (1996) Secondary structure and thermostability of the Photosystem II manganese-stabilizing protein of the thermophilic cyanobacterium Synechococcus elongatus. Biochim Biophys Acta [vn1297]: 167–170

  • Svensson B, Etchebest C, Tuffery P, vanKan P, Smith J and Styring S (1996) A model for the Photosystem II reaction center core including the structure of the primary donor P-680. Biochemistry 35: 14486–14502

    Article  PubMed  CAS  Google Scholar 

  • Svensson B, Tiede DM and Barry BA (2002) Small-angle Xray scattering studies of the manganese stabilizing subunit in Photosystem II. J Phys Chem B 106: 8485–8488

    Article  CAS  Google Scholar 

  • Tanaka S and Wada K (1988) The status of cysteine residues in the extrinsic 33 kDa protein of spinach Photosystem II complexes. Photosynth Res 17: 255–266

    Article  CAS  Google Scholar 

  • Tanaka S, Kawata Y, Wada K and Hamaguchi K (1989) Extrinsic 33-kilodalton protein of spinach oxygen-evolving complexes: kinetic studies of folding and disulfide reduction. Biochemistry 28: 7188–7193

    Article  PubMed  CAS  Google Scholar 

  • Tohri A, Suzuki T, Okuyama S, Kamino K, Motoki A, Hirano M, Ohta H, Shen JR, Yamamoto Y and Enami I (2002) Comparison of the structure of the extrinsic 33 kDa protein from different organisms. Plant Cell Physiol 43: 429–439

    Article  PubMed  CAS  Google Scholar 

  • Tucker DL, Hirsh K, Li H, Boardman B and Sherman LA (2001) The manganese stabilizing protein (MSP) and the control of O-2 evolution in the unicellular, diazotrophic cyanobacterium, Cyanothece sp ATCC 51142. Biochim Biophys Acta 1504: 409–422

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11: 739–756

    Article  PubMed  CAS  Google Scholar 

  • Weinreb PH, Zhen WG, Poon AW, Conway KA and Lansbury PT (1996) NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry 35: 13709–13715

    Article  PubMed  CAS  Google Scholar 

  • Xu Q and Bricker TM (1992) Structural organization of proteins on the oxidizing side of Photosystem II. J Biol Chem 267: 25816– 25821

    PubMed  CAS  Google Scholar 

  • Xu Q, Nelson J and Bricker TM (1994) Secondary structure of the 33 kDa, extrinsic protein of Photosystem II: a far-UV circular dichroism study. Biochim Biophys Acta 1188: 427–431

    Article  PubMed  Google Scholar 

  • Yocum CF (1991) Calcium activation of photosynthetic water oxidation. Biochim Biophys Acta 1059: 1–15

    Article  CAS  Google Scholar 

  • Yu Y, Li R, Xu C, Ruan K, Shen Y and Govindjee (2001) Nbromosuccinimide modification of W241 at the C-terminus of the manganese stabilizing protein of plant Photosystem II influences its structure and function. Phys Plant 111: 108–115

    Article  CAS  Google Scholar 

  • Zhang L-X, Liang H-G, Wang J, Li WR and Yu TZ (1996) Fluorescence and Fourier-transform infrared spectroscopic studies on the role on disulfide bond in the calcium binding in the 33 kDa protein of Photosystem II. Photosynth Res 48: 379–384

    Article  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger Wand Orth P (2001) Crystal structure of Photosystem II from Synechococcus elongatus at 3.8 angstrom resolution. Nature 409: 739–743

    Article  PubMed  CAS  Google Scholar 

  • Zubrzycki IZ, Frankel LK, Russo PS and Bricker TM (1998) Hydrodynamic studies on the manganese-stabilizing protein of Photosystem II. Biochemistry 37: 13553–13558

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Yocum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popelkova, H., Wyman, A. & Yocum, C. Amino acid sequences and solution structures of manganese stabilizing protein that affect reconstitution of Photosystem II activity. Photosynthesis Research 77, 21–34 (2003). https://doi.org/10.1023/A:1024970926655

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024970926655

Navigation