Skip to main content
Log in

Enhanced HAPEX topography: Comparison of osteoblast response to established cement

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The use of poly(methylmethacrylate) PMMA cement by Charnley in the 1960s revolutionized orthopaedic medicine. Since this time, however, little has changed. The development of bioactive composites, such as HAPEX™ (a composite of 40% vol hydroxyapatite (HA) in a polyethylene matrix) have potential in orthopaedic applications. The composite has been shown to allow direct bone bonding in vivo, and in vitro studies have shown preferential attachment to HA exposed on the composite surface. In vitro study has also shown that altering the topography HAPEX™ can enhance osteoblast response. This study uses microscopical investigation of osteoblast cytoskeleton, and biochemical measurement of proliferation (by thymidine incorporation) and phenotype (by alkaline phosphatase activity) to compare primary human osteoblast (HOB) activity on HAPEX™ and PMMA cement. The study shows large increases in HOB response to the new generation material compared to PMMA, the current implant standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. S. Walker, S. F. Mai, A. G. Coob, G. Bentley and J. Hua, JBJS 74B (1995) 705.

    Google Scholar 

  2. J. Charnley, JBJS 42B (1960) 28.

    Google Scholar 

  3. Y. K. Liu, J. B. Park, G. O. Njus and D. Stienstra, J. Biomed. Mater. Res. 21 (1987) 247.

    Google Scholar 

  4. T. Kindt-Larsen, D. B. Smith and J. S. Jensen, J. Appl. Biomater. 6 (1995) 75.

    Google Scholar 

  5. T. P. Harrigan, J. A. Kareth, D. O. O'Connor, D. W. Burke and W. H. Harris, J. Orthop. Res. 10 (1992) 134.

    Google Scholar 

  6. M. A. R. Freeman, G. W. Bradley and P. A. Revell, JBJS 64B (1982) 489.

    Google Scholar 

  7. J. S. Wang, H. Franzen, E. Jonsson and L. Lidgren, Acta. Orthop. Scand. 64 (1993) 143.

    Google Scholar 

  8. W. Bonfield, M. D. Grynpas, A. E. Tully, J. Bowman and J. Abram, Biomaterials 2 (1981) 185.

    Google Scholar 

  9. P. K. Stephenson, M. A. Freeman, P. A. Revell, J. Germain, M. Tuke and C. J. Pirie, J. Arthroplasty 6 (1991) 51.

    Google Scholar 

  10. H. Ohgushi, Y. Dohi, T. Katuda, S. Tamai, S. Tabata and Y. Suwa, J. Biomed. Mater. Res. 32 (1996) 333.

    Google Scholar 

  11. T. Gruen, G. M. Mcneice and H. C. Amstutz, Clin. Orthop. 141 (1979) 17.

    Google Scholar 

  12. A. S. Posner and F. Betts, Acc. Chem. Res., 8 (1975) 273.

    Google Scholar 

  13. R. N. Downes, S. Vardy, K. E. Tanner and W. Bonfield, Bioceramics 4 (1991) 239.

    Google Scholar 

  14. J. Huang, M. Wang, K. E. Tanner, W. Bonfield and L. Di Silvio, J. Mater. Sci. Mater. Med. 8 (1997) 775.

    Google Scholar 

  15. A. S. G. Curtis and C. D. W. Wilkinson, Trends Biotechnol. 19 (2001) 97.

    Google Scholar 

  16. A. M. Rajnicek and C. D. Mccraig, J. Cell. Sci. 110 (1997) 2915.

    Google Scholar 

  17. M. J. Dalby, S. J. Yarwood, M. O. Riehle, H. J. H. Johnstone, S. Affrossman and A. S. G. Curtis, Exp. Cell. Res. 276 (2002) 1.

    Google Scholar 

  18. M. J. Dalby, M. Riehle, H. J. H. Johnstone, S. Affrossman and A. S. G. Curtis, Biomaterials 23 (2002) 2945.

    Google Scholar 

  19. B. A. Dalton, M. D. M. Evans, G. A. Mcfarland and J. G. Steele, J. Biomed. Mater. Res. 45 (1999) 384.

    Google Scholar 

  20. C. Gray, A. Boyde and S. J. Jones, Bone 18 (1996) 115.

    Google Scholar 

  21. M. J. Dalby, M. V. Kayser, W. Bonfield and L. Di Silvio, Biomaterials 23 (2002) 681.

    Google Scholar 

  22. M. J. Dalby, L. Di Silvio, N. Gurav, B. Annaz, M. V. Kayser and W. Bonfield, Tissue Eng. 8 (2002) 467.

    Google Scholar 

  23. M. J. Dalby, L. Di Silvio, E. J. Harper and W. Bonfield, Biomaterials 23 (2002) 569.

    Google Scholar 

  24. M. J. Dalby, L. Di Silvio, E. J. Harper and W. Bonfield, Biomaterials 22 (2001) 1739.

    Google Scholar 

  25. M. J. Dalby, L. Di Silvio, E. J. Harper and W. Bonfield, Biomaterials 23 (2002) 569.

    Google Scholar 

  26. M. J. Dalby, L. Di Silvio, E. J. Harper and W. Bonfield, J. Mater. Sci. Mater. Med. 10 (1999) 793.

    Google Scholar 

  27. M. J. Dalby, L. Di Silvio, E. J. Harper and W. Bonfield, J. Mater. Sci. Mater. Med. 13 (2002) 311.

    Google Scholar 

  28. L. Di Silvio and N. GuravHuman Cell Culture (Kluwer Academic Publishers, London, 2001) 221.

    Google Scholar 

  29. B. Kasemo and J. Lausmaa, Environ. Health Prospects 102 (1994) 878.

    Google Scholar 

  30. L. Di Silvio, M. J. Dalby and W. Bonfield, Biomaterials 23 (2002) 101.

    Google Scholar 

  31. K. Burridge and M. Chzanowska-Wodnick, Annu. Rev. Cell Dev. Biol. 12 (1996) 463.

    Google Scholar 

  32. R. Sinha, F. Morris, A. Suken, S. Shah and R. Tuan, Clin. Orthop. 305 (1994) 258.

    Google Scholar 

  33. R. L. Juliano and S. Haskill, J. Cell. Biol. 120 (1993) 577.

    Google Scholar 

  34. P. J. Marie, Calcif. Tissue Int. 56 (1995) supplement.

  35. E. A. Cowles, M. E. Derome, G. Pastizzo, L. L. Brailey and G. A. Gronowicz, Calcif. Tissue Int. 62 (1998) 74.

    Google Scholar 

  36. S. Y. AliBone Biology and Skeletal Disorders (Carfax, Abingdon, UK, 1992) 19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Dalby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalby, M.J., Bonfield, W. & Di Silvio, L. Enhanced HAPEX topography: Comparison of osteoblast response to established cement. Journal of Materials Science: Materials in Medicine 14, 693–697 (2003). https://doi.org/10.1023/A:1024959632082

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024959632082

Keywords

Navigation