Skip to main content

Phycobiliproteins and phycobilisomes: the early observations

Abstract

The purpose of this minireview is to highlight the early observations that led to the discovery of the physico-chemical properties of the phycobiliproteins, their structure and function, and to their architectural organization in supramolecular complexes, the phycobilisomes. Generally attached on the stromal surface of the thylakoid membranes in both prokaryotic (cyanobacteria) and eukaryotic cells (cyanelles, red algae and cryptomonads), these complexes represent the most abundant soluble proteins and the major light-harvesting antennae for photosynthesis. This review mainly focuses on the years prior to the development of the molecular biology of cyanobacteria that flourished in the 1980s. We refer the reader to the comprehensive and excellent review by Sidler (1994) for more recent discoveries and more detailed literature on this topic. [-6pt]

‘It would be difficult to find another series of colouring matters of greater beauty or with such remarkable and instructive chemical and physical peculiarities.’ —H. Sorby, 1877.

This is a preview of subscription content, access via your institution.

References

  • Airth RL and Blinks LR (1956) A new phycoerythrin from Porphyra naiadum. Biol Bull III: 321–327

    Google Scholar 

  • Arnold W and Oppenheimer JR (1950) International conversion in the photosynthetic mechanism of blue-green algae. J Gen Physiol 33: 423–435

    Article  PubMed  CAS  Google Scholar 

  • Bennett A and Bogorad L (1971) Properties of subunits and aggregates of blue-green algal biliproteins. Biochemistry 10:3625–3634

    Article  PubMed  CAS  Google Scholar 

  • Bennett A and Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58: 419–435

    Article  PubMed  CAS  Google Scholar 

  • Berns DS and Edwards MR (1965) Electron micrographic investigations of C-phycocyanin. Arch Biochem Biophys 110: 511–516

    Article  PubMed  CAS  Google Scholar 

  • Blinks LR (1954) The photosynthetic function of pigments other than chlorophyll. Annu Rev Plant Physiol 5:93–114

    Article  CAS  Google Scholar 

  • Boresch K (1919) Ñber die Einwirkung farbigen Lichtes auf die Färbung von Cyanophyceen. Ber Deutsch Bot Ges 37:25–39

    Google Scholar 

  • Boresch K (1921) Die komplementäre chromatische adaptation. Arch Protistenk 44: 1–70

    Google Scholar 

  • Brody M and Emerson R (1959) The quantum yield of photosynthesis in Porphridium cruentum, and the role of chlorophyll a in the photosynthesis of red algae. J Gen Microbiol 43: 251–264

    CAS  Google Scholar 

  • Brody SS (2002) Fluorescence lifetime, yield, energy transfer and spectrum in photosynthesis, 1950-1960. Photosynth Res 73: 127–132

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA (1977) Comparative studies on cyanobacterial and rhodophytan biliproteins. PhD dissertation, University of California, Los Angeles

    Google Scholar 

  • Bryant DA, Guglielmi G, Tandeau de Marsac N, Castets AM and Cohen-Bazire G (1979) The structure of cyanobacterial phycobilisomes: A model. Arch Microbiol 123: 113–127

    Article  CAS  Google Scholar 

  • Cho F and Govindjee (1970) Low temperature (4–77K) spectroscopy of Anacystis: temperature dependence of energy transfer efficiency. Biochim Biophys Acta 216: 151–161

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Bazire G, Béguin S, Rimon S, Glazer AN and Brown DM (1977) Physico-chemical and immunological properties of allophycocyanins. Arch Microbiol 111: 225–238

    Article  PubMed  CAS  Google Scholar 

  • Craig IW and Carr NG (1968) C-phycocyanin and allophycocyanin in two species of blue-green algae. Biochem J 106: 361–366

    PubMed  CAS  Google Scholar 

  • Cramer C (1862) Das Rhodospermin, ein krystalloidischer, quellbarer Körper, im Zellinhalt verschiedener Florideen. Vierteljahrsschr Naturforsch Ges Zurich 7: 350–365

    Google Scholar 

  • Dale RE and Teale FWJ (1970) Number and distribution of chromophore types in native phycobiliproteins. Photochem Photobiol 12: 99–117

    PubMed  CAS  Google Scholar 

  • Diakoff S and Scheibe J (1973) Action spectra for chromatic adaptation in Tolypothrix tenuis. Plant Physiol 51: 382–385

    PubMed  CAS  Google Scholar 

  • Dobler M, Dover SD, Laves K, Binder A and Zuber H (1972) Crystallization and preliminary crystal data of C-phycocyanin. J Mol Biol 71: 785–787

    PubMed  CAS  Google Scholar 

  • Duysens LNM (1951) Transfer of light energy within the pigment systems present in photosynthesizing cells. Nature 168: 548–550

    PubMed  CAS  Google Scholar 

  • Duysens LNM (1952) Transfer of energy in photosynthesis. Doctoral thesis, State University Utrecht, The Netherlands

    Google Scholar 

  • Eiserling FA and Glazer AN (1974) Blue-green algal proteins: assembly forms of C-phycocyanin from Synechococcus sp. J Ultrastruct Res 47: 16–25

    Article  PubMed  CAS  Google Scholar 

  • Emerson R and Lewis CM (1942) The photosynthetic efficiency of phycocyanin in Chroococcus, and the problem of carotenoid participation in photosynthesis. J Gen Physiol 25: 579–595

    Article  CAS  PubMed  Google Scholar 

  • Engelmann TW(1881) Neue Methode zur Untersuchung der Sauerstoffausscheidung pflanzlicher und thierischer Organismen. Bot Z 39: 441–448

    Google Scholar 

  • Engelmann TW (1882) Ueber Sauerstoffausscheidung von Pflanzenzellen im Mikrospectrum. Bot Z 40: 419–425

    Google Scholar 

  • Engelmann TW (1883) Farbe und Assimilation. I. Assimilation findet nur in den farbstoffhaltigen Plasmatheilchen statt. II. Näherer Zusammenhang zwischen Lichtabsorption und Assimilation. III. Weitere Folgerungen. Bot Z 41: 1–29

    Google Scholar 

  • Engelmann TW (1884) Untersuchungen über die qualitativen Beziehungen zwischen Absorption des Lichtes und Assimilation in Pflanzenzellen. I. Das Mikrospectraphotometer, ein Apparat zur quantitativen Mikrospectralanalyse. II. Experimentelle Grundlagen zur Ermittelung der quantitativen Beziehungen zwischen Assimilationsenergie und Absorptiongrösse. III. Bestimmung der Vertheilung der Energie im Spectrum von Sonnenlicht mittels Bacterien-Methode und quantitativen Mikrospectralanalyse. Bot Z 42: 81–105

    Google Scholar 

  • Engelmann TW (1902) Ueber experimentelle erzeugung zweckmässiger aenderungen der färbung pflanzlicher chromophylle durch farbiges licht. Arch Anat Physiol (Physiol Abt): 333–335

  • Esenbeck N (1836) Ueber einen blau-rothen Farbstoff, der sich bei der Zersetzung von Oscillatorien bildet. Liebigs Ann Chem XVII: 75–82

    Google Scholar 

  • Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Physik 2: 55–75

    Google Scholar 

  • Frank G, Sidler W, Widmer H and Zuber H (1978) The complete amino acid sequence of both subunits of C-phycocyanin from the cyanobacterium Mastigocladus laminosus. Hoppe Seyler's Z Physiol Chem 359: 1491–1507

    PubMed  CAS  Google Scholar 

  • French CS and Young VK (1952) The fluorescence spectra of red algae and the transfer of energy from phycoerythrin to phycocyanin and chlorophyll. J Gen Physiol 35: 873–890

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y and Hattori A (1960) Effect of chromatic lights on phycobilin formation in a blue-green alga Tolypothrix Tenuis. Plant Cell Physiol 1: 293–303

    CAS  Google Scholar 

  • Fujita Y and Hattori A (1962) Photochemical interconversion between precursors of phycobilin chromoproteids in Tolypothrix tenuis. Plant Cell Physiol 3: 209–220

    CAS  Google Scholar 

  • Fujita Y and Hattori A (1963) Effects of second chromatic illumination on phycobilin chromoprotein formation in chromatically preilluminated cells of Tolypothrix tenuis. Plant Cell Physiol (special issue on Microalgae & Photosynthetic Bacteria): 431–440

  • Gaidukov N (1902). Ñber den Einfluss farbigen Lichtes auf die Färbung der Oscillarien. Abh Preuss Akad Wiss V: 8–13

    Google Scholar 

  • Gaidukov N (1903a) Die Farbenveränderung bei den Prozessen der komplementären chromatischen Adaptation. Ber Deutsch Bot Ges 21: 517–522

    CAS  Google Scholar 

  • Gaidukov N (1903b) Weitere Untersuchungen Ñber den Einfluss farbigen Lichtes auf die Färbung der Oscillarien. Ber Deutsch Bot Ges 21: 484–492

    CAS  Google Scholar 

  • Gaidukov N (1923) Zur Frage nach der komplementären chromatischen Adaptation. Ber Deutsch Bot Ges 41: 356–361

    Google Scholar 

  • Gantt E (1980) Structure and function of phycobilisomes: lightharvesting pigment complexes in red and blue-green algae. Int Rev Cytol 66: 45–80

    Article  CAS  Google Scholar 

  • Gantt E and Conti SF (1965) The ultrastructure of Porphyridium cruentum. J Cell Biol 26: 365–381

    Article  PubMed  CAS  Google Scholar 

  • Gantt E and Conti SF (1966a) Granules associated with the chloroplast lamellae of Porphyridium cruentum. J Cell Biol 29: 423–434

    Article  PubMed  CAS  Google Scholar 

  • Gantt E and Conti SF (1966b) Phycobiliprotein localization in algae. Brookhaven Symp Biol 19:393–405

    PubMed  CAS  Google Scholar 

  • Gantt E and Lipschultz CA (1972) Phycobilisomes of Porphyridium cruentum. I. Isolation. J Cell Biol 54: 313–324

    Article  PubMed  CAS  Google Scholar 

  • Gantt E and Lipschultz CA (1973) Energy transfer in phycobilisomes from phycoerythrin to allophycocyanin. Biochim Biophys Acta 292: 858–861

    Article  PubMed  CAS  Google Scholar 

  • Gantt E and Lipschultz CA (1974) Phycobilisomes of Porphyridium cruentum: Pigment analysis. Biochemistry 13: 2960–2966

    Article  PubMed  CAS  Google Scholar 

  • Ghosh AK and Govindjee (1966) Transfer of excitation energy in Anacystis nidulans grown to obtain different pigment ratios. Biophys J 6: 611–619

    PubMed  CAS  Google Scholar 

  • Glazer AN (1976) Phycocyanins: Structure and Function. In: Smith KC (ed) Photochemical and Photobiological Reviews, Vol 1, pp 71–115. Plenum Publishing, New York

    Google Scholar 

  • Glazer AN (1984) Phycobilisome. A macromolecular complex optimized for light energy transfer. Biochim Biophys Acta 768: 29–51

    CAS  Google Scholar 

  • Glazer AN (1989) Light guides. Directional energy transfer in a photosynthetic antenna. J Biol Chem 264: 1–4

    PubMed  CAS  Google Scholar 

  • Glazer AN and Cohen-Bazire G (1971) Subunit structure of the phycobiliproteins of blue-green algae. Proc Natl Acad, Sci USA 68: 1398–1401

    Article  CAS  Google Scholar 

  • Glazer AN and Fang S (1973a) Chromophore content of blue-green algal phycobiliproteins. J Biol Chem 248: 659–662

    PubMed  CAS  Google Scholar 

  • Glazer AN and Fang S (1973b) Formation of hybrid proteins from the α and β subunits of phycocyanins of unicellular and filamentous blue-green algae. J Biol Chem 248: 663–671

    PubMed  CAS  Google Scholar 

  • Glazer AN and Hixson CS (1977) Subunit structure and chromophore composition of Rhodophytan phycoerythrins. Porphyridium cruentum B-phycoerythrin and b-phycoerythrin. J Biol Chem 252: 32–42

    PubMed  CAS  Google Scholar 

  • Glazer AN, Fang S and Brown DM (1973) Spectroscopic properties of C-phycocyanin and of its α and β subunits. J Biol Chem 16: 5679–5685

    Google Scholar 

  • Grossman A (2003) A molecular understanding of complementary chromatic adaptation. Photosynth Res 76: 207–215 (this issue)

    Article  PubMed  CAS  Google Scholar 

  • Guglielmi G, Cohen-Bazire G and Bryant DA (1981) The structure of Gloeobacter violaceus and its phycobilisomes. Arch Microbiol 129: 181–189

    Article  CAS  Google Scholar 

  • Gysi J and Zuber H (1974) Isolation and characterization of allophycocyanin II from the thermophilic blue-green alga Mastigocladus laminosus Cohn. FEBS Lett 48: 209–213

    Article  PubMed  CAS  Google Scholar 

  • Halldal P (1970) The photosynthetic apparatus of microalgae and its adaptation to environmental factors. In: Halldal P (ed) Photobiology of Microorganisms, Chap 2, pp 17–55. Wiley, London

    Google Scholar 

  • Hanson EK (1909) Observations on phycoerythrin, the red pigment of deep-water algae. New Phytol 8: 337–344

    Article  Google Scholar 

  • Harder R (1923) Ñber die Bedeutung von Lichtintensität und Wellenlänge für die Assimilation farbiger Algen. Z Bot XV: 305–355

    Google Scholar 

  • Hattori A and Fujita Y (1959a) Formation of phycobilin pigments in a blue-green alga, Tolypothrix tenuis, as induced by illumination with colored lights. J Biochem 46: 521–524

    CAS  Google Scholar 

  • Hattori A and Fujita Y (1959b) Spectroscopic studies on the phycobilin pigments obtained from blue-green and red algae. J Biochem 46: 903–909

    CAS  Google Scholar 

  • Haury JF and Bogorad L (1977) Action spectra for phycobiliprotein synthesis in a chromatically adapting cyanophyte, Fremyella diplosiphon. Plant Physiol 60: 835–839

    Article  PubMed  CAS  Google Scholar 

  • Haxo FT and Blinks LR (1950) Photosynthetic action spectra of marine algae. J Gen Physiol 33: 389–422

    Article  PubMed  CAS  Google Scholar 

  • Herdman M, Coursin T, Rippka R, Houmard J and Tandeau de Marsac N (2000) A new appraisal of the prokaryotic origin of eukaryotic phytochromes. J Mol Evol 51: 205–213

    PubMed  CAS  Google Scholar 

  • Jones LW and Myers J (1965) Pigment variations in Anacystis nidulans induced by light of selected wavelengths. J Phycol 1: 6–13

    Google Scholar 

  • Kehoe DM and Grossman AR (1996) Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273: 1409–1412

    PubMed  CAS  Google Scholar 

  • Kessel M, MacColl R, Berns DS and Edwards MR (1973) Electron microscope and physical chemical characterization of Cphycocyanin from fresh extracts of two blue-green algae. Can J Microbiol 19: 831–836

    PubMed  CAS  Google Scholar 

  • Kitasato Z (1925) Biochemische Studien über Phycoerythrin und Phycocyan. Acta Phytochem 2: 75–97

    CAS  Google Scholar 

  • Kützing FT (1843) Phycologia generalis, oder Anatomie, Physiologie und Systemkunde der Tange. FA Brockhaus, Leipzig

    Google Scholar 

  • Kylin H (1910) Ñber Phykoerythrin und Phykocyan bei Ceramium rubrum (Huds.) Ag. Hoppe-Seyler's Z Physiol Chem LXIX: 169–239

    Google Scholar 

  • Kylin H (1912) Ñber die roten und blauen Farbstoffe der Algen. Hoppe-Seyler's Z Physiol Chem LXXVI: 396–425

    Google Scholar 

  • Lemasson C, Tandeau de Marsac N and Cohen-Bazire G (1973) Role of allophycocyanin as a light-harvesting pigment in cyanobacteria. Proc Natl Acad Sci USA 70: 3130–3133

    Article  PubMed  CAS  Google Scholar 

  • Lemberg R (1928) Die chromoproteide der rotalgen. I. Liebigs Ann Chem 461: 46–89

    CAS  Google Scholar 

  • Lemberg R (1930) Chromoproteide der Rotalgen. II. Spaltung mit pepsin un säuren. Isolierung eines pyrrolfarbstoffs. Liebigs Ann Chem 477: 195–245

    CAS  Google Scholar 

  • Lemberg R and Bader G (1933) Die phycobiline der rot-algen. Ñberführung in mesobilirubin und dehydro - mesobilirubin. Liebigs Ann Chem 505: 151–177

    CAS  Google Scholar 

  • Lundell DJ, Yamanaka G and Glazer AN (1981) A terminal energy acceptor of the phycobilisome: the 75 000–dalton polypeptide of Synechococcus 6301 phycobilisomes - a new biliprotein. J Cell Biol 91: 315–319

    Article  PubMed  CAS  Google Scholar 

  • MacColl R, Lee JJ and Berns DS (1971) Protein aggregation in C-phycocyanin - studies at very low concentration with the photoelectric scanner of the ultracentrifuge. Biochem J 122: 421–426

    PubMed  CAS  Google Scholar 

  • Mimuro M (2002) Visualization of excitation energy transfer processes in plants and algae. Photosynth Res 73: 133–138

    Article  PubMed  CAS  Google Scholar 

  • Mölisch H (1894) Das phycoerythrin, seine Krystallisirbarkeit und chemische Natur Bot Z 52: 177–189

    Google Scholar 

  • Mölisch H (1895) Das Phycocyan, ein krystallisirbarer Eiweisskörper. Bot Z 53: 131–135

    Google Scholar 

  • Myers A, Preston RD and Ripley GW (1956) Fine structure in the red algae - I. X-ray and electronmicroscope investigation of Griffithsia flosculosa. Proc R Soc London Ser B 144: 450–459

    Article  Google Scholar 

  • Myers J and Kratz WA (1955) Relations between pigment content and photosynthetic characteristics in a blue-green algea. J Gen Microbiol 39: 11–22

    CAS  Google Scholar 

  • Neufeld GJ and Riggs AF (1969) Aggregation properties of Cphycocyanin from Anacystis nidulans. Biochem Biophys Acta 181: 234–243

    PubMed  CAS  Google Scholar 

  • O'Carra P (1970) Algal biliproteins. Biochem J 119: 2–3

    Google Scholar 

  • O'Carra P and Killilea SD (1971) Subunit structures of Cphycocyanin and C-phycoerythrin. Biochem Biophys Res Commun 45: 1192–1197

    Article  PubMed  Google Scholar 

  • O'hEocha C (1958) Comparative biochemical studies of the phycobilins. Arch Biochem Biophys 73: 207–219

    Article  PubMed  Google Scholar 

  • O'hEocha C (1962) Phycobilins. In: Lewin RA (ed) Physiology and Biochemistry of Algae, Chap 2, pp 421–425. Academic Press, New York

    Google Scholar 

  • O'hEocha C (1965) Biliproteins of algae. Annu Rev Plant Physiol 16: 415–434

    Article  Google Scholar 

  • Oltmanns F (1892) Ueber die Culturund Lebensbedingungen der Meeresalgen. Jahrb wiss Botany 23: 349–440

    Google Scholar 

  • Ramus J, Beale SI, Mauzzerall D and Howard KL (1976a) Changes in photosynthetic pigment concentration in seaweeds as a function of water depth. Marine Biol 37: 223–229

    Article  CAS  Google Scholar 

  • Ramus J, Beale SI and Mauzzerall D (1976b) Correlation of changes in pigment content with photosynthetic capacity of seaweeds as a function of water depth. Marine Biol 37: 231–238

    Article  CAS  Google Scholar 

  • Rippka R, Waterbury J and Cohen-Bazire G (1974) A cyanobacterium which lacks thylakoids. Arch Microbiol 100: 419–436

    Article  CAS  Google Scholar 

  • Rüdiger W (1970) Recent chemistry and biochemistry of bile pigments. Angew Chem Int Ed 9: 473–480

    Article  Google Scholar 

  • Rüdiger W(1975) Phycobiliproteide. Ber Deutsch Bot Ges 88: 125–139

    Google Scholar 

  • Scheer H (1981) Biliproteins. Angew Chem Int Ed Engl 20: 241–261

    Article  Google Scholar 

  • Schütt F (1888) Weitere Beiträge zur Kenntniss des Phycoerythrins. Ber Deutsch Bot Ges VI: 305–323

    Google Scholar 

  • Sidler WA (1994) Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, Chap 7, pp 139–216. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Siegelman HW, Chapman DJ and Cole WJ (1968) The bile pigments of plants. In: Goodwin TW (ed) Biochemical Society Symposia, Vol 28, pp 107–120. Academic Press, New York

    Google Scholar 

  • Sorby HC (1877) On the characteristic colouring-matters of the red groups of algae. J Linnean Soc Bot XV: 34–40

    Google Scholar 

  • Stokes GG (1854) Ñber die Metallreflexion an gewissen nichtmetallischen Substanzen. Ann Phys Chem (Poggendorff JC) 4: 300–313

    Google Scholar 

  • Svedberg T and Eriksson IB (1932) The molecular weights of phycocyan and of phycoerythrin. III. J Am Chem Soc 54: 3998–4010

    Article  Google Scholar 

  • Svedberg T and Katsurai T (1929) The molecular weights of phycocyan and of phycoerythrin from Porphyra tenera and of phycocyan from Aphanizomenon flos aquae. J Am Chem Soc 51: 3573–3583

    Article  CAS  Google Scholar 

  • Svedberg T and Lewis NB (1928) The molecular weights of phycoerythrin and of phycocyan. J Am Chem Soc 50: 525–536

    Article  Google Scholar 

  • Tandeau de Marsac N and Cohen-Bazire G (1977) Molecular composition of cyanobacterial phycobilisomes. Proc Natl Acad Sci USA 74: 1635–1639

    Article  PubMed  Google Scholar 

  • Tandeau de Marsac N, Castets AM and Cohen-Bazire G (1980) Wavelength modulation of phycoerythrin synthesis in Synechocystis sp. 6701. J Bacteriol 142: 310–314

    PubMed  CAS  Google Scholar 

  • Teale FWJ and Dale RE (1970) Isolation and spectral characterization of phycobiliproteins. Biochem J 116: 161–169

    PubMed  CAS  Google Scholar 

  • Vogelmann TC and Scheibe J (1978) Action spectra for chromatic adaptation in the blue-green algae Fremyella diplosiphon. Planta 143: 233–239

    Article  CAS  Google Scholar 

  • Volk SL and Bishop NI (1968) Photosynthetic efficiency of a phycocyanin-less mutant of Cyanidium. Photochem Photobiol 8: 213–221

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tandeau de Marsac, N. Phycobiliproteins and phycobilisomes: the early observations. Photosynthesis Research 76, 193–205 (2003). https://doi.org/10.1023/A:1024954911473

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024954911473

  • allophycocyanin
  • Lawrence Bogorad
  • K. Boresch
  • Donald Bryant
  • Germaine Cohen-Bazire
  • Theodor Engelmann
  • Nees Esenbeck
  • Yoshihiko Fujita
  • N. Gaidukov
  • Elisabeth Gantt
  • Alexander Glazer
  • Akihito Hattori
  • Harald Kylin
  • light-harvesting antennae
  • Jack Myers
  • Padraig O'Carra
  • Colm O'hEocha
  • photosynthesis
  • phycocyanin
  • phycoerythrin
  • Wolfhart Rüdiger
  • Hugo Scheer
  • H. Sorby
  • Nicole Tandeau de Marsac
  • Herbert Zuber